Question
Question: $\int(x^6+x^3)\sqrt[3]{x^3+2}dx$...
∫(x6+x3)3x3+2dx

Answer
81x4(x3+2)4/3+C.
Explanation
Solution
We start with the integral
I=∫(x6+x3)3x3+2dx.Notice that
x6+x3=x3(x3+1).We guess an antiderivative of the form
F(x)=81x4(x3+2)4/3.Differentiate F(x):
F′(x)=81[4x3(x3+2)4/3+x4⋅34(x3+2)1/3⋅3x2]=81[4x3(x3+2)4/3+4x6(x3+2)1/3]=21[x3(x3+2)4/3+x6(x3+2)1/3].Factor out x3(x3+2)1/3:
F′(x)=21x3(x3+2)1/3[(x3+2)+x3]=21x3(x3+2)1/3(2x3+2).Since 2x3+2=2(x3+1), we have
F′(x)=x3(x3+2)1/3(x3+1),which is exactly the given integrand.
Thus, the antiderivative is
81x4(x3+2)4/3+C.