Solveeit Logo

Question

Question: $\int(x^6+x^3)\sqrt[3]{x^3+2}dx$...

(x6+x3)x3+23dx\int(x^6+x^3)\sqrt[3]{x^3+2}dx

Answer

18x4(x3+2)4/3+C.\frac{1}{8}\,x^4\,(x^3+2)^{4/3}+C.

Explanation

Solution

We start with the integral

I=(x6+x3)x3+23dx.I=\int (x^6+x^3)\sqrt[3]{x^3+2}\,dx.

Notice that

x6+x3=x3(x3+1).x^6+x^3=x^3(x^3+1).

We guess an antiderivative of the form

F(x)=18x4(x3+2)4/3.F(x)=\frac{1}{8}\,x^4\,(x^3+2)^{4/3}.

Differentiate F(x)F(x):

F(x)=18[4x3(x3+2)4/3+x443(x3+2)1/33x2]=18[4x3(x3+2)4/3+4x6(x3+2)1/3]=12[x3(x3+2)4/3+x6(x3+2)1/3].\begin{aligned} F'(x) &=\frac{1}{8}\left[4x^3\,(x^3+2)^{4/3}+x^4\cdot\frac{4}{3}\,(x^3+2)^{1/3}\cdot 3x^2\right]\\[1mm] &=\frac{1}{8}\left[4x^3\,(x^3+2)^{4/3}+4x^6\,(x^3+2)^{1/3}\right]\\[1mm] &=\frac{1}{2}\left[x^3\,(x^3+2)^{4/3}+x^6\,(x^3+2)^{1/3}\right]. \end{aligned}

Factor out x3(x3+2)1/3x^3\,(x^3+2)^{1/3}:

F(x)=12x3(x3+2)1/3[(x3+2)+x3]=12x3(x3+2)1/3(2x3+2).F'(x)=\frac{1}{2}\,x^3\,(x^3+2)^{1/3}\Big[(x^3+2)+x^3\Big] =\frac{1}{2}\,x^3\,(x^3+2)^{1/3}\,(2x^3+2).

Since 2x3+2=2(x3+1)2x^3+2=2(x^3+1), we have

F(x)=x3(x3+2)1/3(x3+1),F'(x)= x^3\,(x^3+2)^{1/3}(x^3+1),

which is exactly the given integrand.

Thus, the antiderivative is

18x4(x3+2)4/3+C.\frac{1}{8}\,x^4\,(x^3+2)^{4/3}+C.