Solveeit Logo

Question

Mathematics Question on Straight lines

Internal bisector of \angle A of AABC m eets side BC at D. A line drawn through D perpendicular to AD in tersects the side AC a t E an d side AB at F. If a , b, c represent sides of \triangle ABC, then

A

AE is HM of b and c

B

AD = 2bcb+ccosA2 \frac{ 2bc}{ b + c} cos \frac{A}{2}

C

EF = 4bcb+csinA2 \frac{ 4bc}{ b + c} sin \frac{A}{2}

D

\triangle AEF is isosceles.

Answer

\triangle AEF is isosceles.

Explanation

Solution

Since, ABC=ABD+ACD\triangle ABC = \triangle ABD + \triangle ACD 12bcsinA=12cADsinA2+12bADsinA2\Rightarrow \frac{1}{2} bc \, sin \, A = \frac{1}{2} c \, AD \, sin \frac{A}{2} + \frac{1}{2} b \, AD \, sin \, \frac{A}{2} AD=2bcb+ccosA2\Rightarrow AD = \frac{ 2bc }{ b + c} \, cos \, \frac{A}{ 2} Again, AE = AD sec A2=2bcb+c\frac{A}{2} = \frac{ 2 bc }{ b + c} \Rightarrow AE is HM of b and c EF = ED +D F = 2DE =2 AD tan A2\frac{A}{2} = 2 2bcb+ccosA2tanA2=4bcb+csinA2 \frac{ 2bc }{ b + c} cos \frac{A}{2} tan \frac{A}{2} = \frac{ 4 bc }{ b + c} sin \frac{A}{2} Since, AD \perp EF and DE = DF and AD is bisector. \Rightarrow \triangle AEF is isosceles. Hence, (a), (b), (c), (d) are correct answers.