Solveeit Logo

Question

Question: Interaction between atoms of a diatomic molecule is described by the relation P.E. (x) = \(\frac { \...

Interaction between atoms of a diatomic molecule is described by the relation P.E. (x) = αx12βx6\frac { \alpha } { x ^ { 12 } } - \frac { \beta } { x ^ { 6 } }, where P.E. is potential energy. If the two atoms enjoy stable equilibrium, the distance between them would be

A

(αβ)1/6\left( \frac { \alpha } { \beta } \right) ^ { 1 / 6 }

B

(2αβ)1/6\left( \frac { 2 \alpha } { \beta } \right) ^ { 1 / 6 }

C

(2βα)1/6\left( \frac { 2 \beta } { \alpha } \right) ^ { 1 / 6 }

D

(βα)1/6\left( \frac { \beta } { \alpha } \right) ^ { 1 / 6 }

Answer

(2αβ)1/6\left( \frac { 2 \alpha } { \beta } \right) ^ { 1 / 6 }

Explanation

Solution

Potential energy is minimum if equilibrium is stable.

ddx[\frac { \mathrm { d } } { \mathrm { dx } } [ P.E. (x)]=0( \mathrm { x } ) ] = 0

i.e.,

i.e., 12αx13+6βx7\frac { - 12 \alpha } { x ^ { 13 } } + \frac { 6 \beta } { x ^ { 7 } } = 0

i.e., [-2α + βx6] 6x13\frac { 6 } { x ^ { 13 } } = 0

i.e., (-2α + βx6) = 0

i.e., x = (2αβ)1/6\left( \frac { 2 \alpha } { \beta } \right) ^ { 1 / 6 }