Solveeit Logo

Question

Question: Integration of tan root x sec square root x/root x dx...

Integration of tan root x sec square root x/root x dx

Answer

tan^2(√x) + C

Explanation

Solution

The integral to be evaluated is: tanxsec2xxdx\int \frac{\tan \sqrt{x} \sec^2 \sqrt{x}}{\sqrt{x}} dx

We use the method of substitution. Let u=tanxu = \tan \sqrt{x}.

Now, we need to find dudu by differentiating uu with respect to xx. dudx=ddx(tanx)\frac{du}{dx} = \frac{d}{dx} (\tan \sqrt{x}) Using the chain rule, ddx(tanf(x))=sec2f(x)f(x)\frac{d}{dx} (\tan f(x)) = \sec^2 f(x) \cdot f'(x), where f(x)=xf(x) = \sqrt{x}. First, find f(x)f'(x): ddx(x)=ddx(x1/2)=12x1/21=12x1/2=12x\frac{d}{dx} (\sqrt{x}) = \frac{d}{dx} (x^{1/2}) = \frac{1}{2} x^{1/2 - 1} = \frac{1}{2} x^{-1/2} = \frac{1}{2\sqrt{x}} Now, substitute this back into the derivative of uu: dudx=sec2x12x\frac{du}{dx} = \sec^2 \sqrt{x} \cdot \frac{1}{2\sqrt{x}} Rearranging to find dudu: du=sec2x2xdxdu = \frac{\sec^2 \sqrt{x}}{2\sqrt{x}} dx This implies: 2du=sec2xxdx2 du = \frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx

Now, substitute uu and 2du2du into the original integral: The integral can be rewritten as: (tanx)(sec2xxdx)\int \left( \tan \sqrt{x} \right) \left( \frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx \right) Substitute u=tanxu = \tan \sqrt{x} and 2du=sec2xxdx2du = \frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx: u(2du)\int u (2 du) =2udu= 2 \int u \, du Now, integrate with respect to uu: =2(u1+11+1)+C= 2 \left( \frac{u^{1+1}}{1+1} \right) + C =2(u22)+C= 2 \left( \frac{u^2}{2} \right) + C =u2+C= u^2 + C Finally, substitute back u=tanxu = \tan \sqrt{x}: =(tanx)2+C= (\tan \sqrt{x})^2 + C =tan2x+C= \tan^2 \sqrt{x} + C

The final answer is tan2x+C\tan^2 \sqrt{x} + C.

Explanation of the solution: The integral is solved using the substitution method. By letting u=tanxu = \tan \sqrt{x}, its differential du=sec2x12xdxdu = \sec^2 \sqrt{x} \cdot \frac{1}{2\sqrt{x}} dx perfectly matches the remaining part of the integrand (up to a constant factor). This transforms the integral into a simple power rule integration in terms of uu, which is then easily evaluated and converted back to the original variable xx.

Answer: The integral is tan2x+C\tan^2 \sqrt{x} + C.