Question
Question: Integration of tan^-1(cos2x-sin2x/cos2x+sin2x))...
Integration of tan^-1(cos2x-sin2x/cos2x+sin2x))
(π/4)x - x^2 + C
Solution
The problem asks for the integration of tan−1(cos2x+sin2xcos2x−sin2x).
Let the given integral be I. I=∫tan−1(cos2x+sin2xcos2x−sin2x)dx
Step 1: Simplify the argument of the inverse tangent function.
Divide the numerator and denominator of the fraction inside the tan−1 by cos2x: cos2x+sin2xcos2x−sin2x=cos2xcos2x+cos2xsin2xcos2xcos2x−cos2xsin2x=1+tan2x1−tan2x We know the trigonometric identity for tan(A−B)=1+tanAtanBtanA−tanB. By setting A=4π (since tan(4π)=1) and B=2x, we can write: 1+tan2x1−tan2x=1+tan(4π)tan2xtan(4π)−tan2x=tan(4π−2x) So, the argument of the inverse tangent simplifies to tan(4π−2x).
Step 2: Simplify the integrand using the property of inverse trigonometric functions.
Substitute the simplified argument back into the integral: I=∫tan−1(tan(4π−2x))dx For the principal value branch of tan−1, we have tan−1(tanθ)=θ. Assuming that (4π−2x) lies within the range (−2π,2π), the integrand simplifies to: I=∫(4π−2x)dx
Step 3: Perform the integration.
Now, integrate the simplified expression term by term: I=∫4πdx−∫2xdx I=4πx−2(1+1x1+1)+C I=4πx−2(2x2)+C I=4πx−x2+C where C is the constant of integration.