Solveeit Logo

Question

Question: Integration of tan^-1(cos2x-sin2x/cos2x+sin2x))...

Integration of tan^-1(cos2x-sin2x/cos2x+sin2x))

Answer

(π/4)x - x^2 + C

Explanation

Solution

The problem asks for the integration of tan1(cos2xsin2xcos2x+sin2x)\tan^{-1}\left(\frac{\cos 2x - \sin 2x}{\cos 2x + \sin 2x}\right).

Let the given integral be II. I=tan1(cos2xsin2xcos2x+sin2x)dxI = \int \tan^{-1}\left(\frac{\cos 2x - \sin 2x}{\cos 2x + \sin 2x}\right) dx

Step 1: Simplify the argument of the inverse tangent function.

Divide the numerator and denominator of the fraction inside the tan1\tan^{-1} by cos2x\cos 2x: cos2xsin2xcos2x+sin2x=cos2xcos2xsin2xcos2xcos2xcos2x+sin2xcos2x=1tan2x1+tan2x\frac{\cos 2x - \sin 2x}{\cos 2x + \sin 2x} = \frac{\frac{\cos 2x}{\cos 2x} - \frac{\sin 2x}{\cos 2x}}{\frac{\cos 2x}{\cos 2x} + \frac{\sin 2x}{\cos 2x}} = \frac{1 - \tan 2x}{1 + \tan 2x} We know the trigonometric identity for tan(AB)=tanAtanB1+tanAtanB\tan(A - B) = \frac{\tan A - \tan B}{1 + \tan A \tan B}. By setting A=π4A = \frac{\pi}{4} (since tan(π4)=1\tan\left(\frac{\pi}{4}\right) = 1) and B=2xB = 2x, we can write: 1tan2x1+tan2x=tan(π4)tan2x1+tan(π4)tan2x=tan(π42x)\frac{1 - \tan 2x}{1 + \tan 2x} = \frac{\tan\left(\frac{\pi}{4}\right) - \tan 2x}{1 + \tan\left(\frac{\pi}{4}\right)\tan 2x} = \tan\left(\frac{\pi}{4} - 2x\right) So, the argument of the inverse tangent simplifies to tan(π42x)\tan\left(\frac{\pi}{4} - 2x\right).

Step 2: Simplify the integrand using the property of inverse trigonometric functions.

Substitute the simplified argument back into the integral: I=tan1(tan(π42x))dxI = \int \tan^{-1}\left(\tan\left(\frac{\pi}{4} - 2x\right)\right) dx For the principal value branch of tan1\tan^{-1}, we have tan1(tanθ)=θ\tan^{-1}(\tan \theta) = \theta. Assuming that (π42x)\left(\frac{\pi}{4} - 2x\right) lies within the range (π2,π2)(-\frac{\pi}{2}, \frac{\pi}{2}), the integrand simplifies to: I=(π42x)dxI = \int \left(\frac{\pi}{4} - 2x\right) dx

Step 3: Perform the integration.

Now, integrate the simplified expression term by term: I=π4dx2xdxI = \int \frac{\pi}{4} dx - \int 2x dx I=π4x2(x1+11+1)+CI = \frac{\pi}{4}x - 2\left(\frac{x^{1+1}}{1+1}\right) + C I=π4x2(x22)+CI = \frac{\pi}{4}x - 2\left(\frac{x^2}{2}\right) + C I=π4xx2+CI = \frac{\pi}{4}x - x^2 + C where CC is the constant of integration.