Solveeit Logo

Question

Question: integration of sin2x...

integration of sin2x

Answer

12cos(2x)+C-\frac{1}{2}\cos(2x) + C

Explanation

Solution

To find the integral of sin(2x)\sin(2x), we use the standard integration formula for trigonometric functions. The general formula for the integral of sin(ax)\sin(ax) is:

sin(ax)dx=1acos(ax)+C\int \sin(ax) \, dx = -\frac{1}{a}\cos(ax) + C

In this case, a=2a = 2. Applying the formula:

sin(2x)dx=12cos(2x)+C\int \sin(2x) \, dx = -\frac{1}{2}\cos(2x) + C

where CC is the constant of integration.

The integral of sin(2x)\sin(2x) is found by applying the standard integration formula sin(ax)dx=1acos(ax)+C\int \sin(ax) \, dx = -\frac{1}{a}\cos(ax) + C. Here, a=2a=2, leading to 12cos(2x)+C-\frac{1}{2}\cos(2x) + C.