Solveeit Logo

Question

Question: Integration of sec square x cosecx square x...

Integration of sec square x cosecx square x

Answer

tan x - cot x + C

Explanation

Solution

To integrate sec2xcosec2x\sec^2 x \operatorname{cosec}^2 x, we can use trigonometric identities.

The given integral is: I=sec2xcosec2xdxI = \int \sec^2 x \operatorname{cosec}^2 x \, dx

Step 1: Rewrite sec2x\sec^2 x and cosec2x\operatorname{cosec}^2 x in terms of sinx\sin x and cosx\cos x. We know that secx=1cosx\sec x = \frac{1}{\cos x} and cosecx=1sinx\operatorname{cosec} x = \frac{1}{\sin x}. So, sec2x=1cos2x\sec^2 x = \frac{1}{\cos^2 x} and cosec2x=1sin2x\operatorname{cosec}^2 x = \frac{1}{\sin^2 x}.

Substitute these into the integral: I=1cos2x1sin2xdxI = \int \frac{1}{\cos^2 x} \cdot \frac{1}{\sin^2 x} \, dx I=1sin2xcos2xdxI = \int \frac{1}{\sin^2 x \cos^2 x} \, dx

Step 2: Use the fundamental trigonometric identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1 in the numerator. We can replace the numerator '1' with sin2x+cos2x\sin^2 x + \cos^2 x: I=sin2x+cos2xsin2xcos2xdxI = \int \frac{\sin^2 x + \cos^2 x}{\sin^2 x \cos^2 x} \, dx

Step 3: Split the fraction into two separate terms. I=(sin2xsin2xcos2x+cos2xsin2xcos2x)dxI = \int \left( \frac{\sin^2 x}{\sin^2 x \cos^2 x} + \frac{\cos^2 x}{\sin^2 x \cos^2 x} \right) \, dx

Step 4: Simplify each term. I=(1cos2x+1sin2x)dxI = \int \left( \frac{1}{\cos^2 x} + \frac{1}{\sin^2 x} \right) \, dx

Step 5: Rewrite the terms using sec2x\sec^2 x and cosec2x\operatorname{cosec}^2 x. I=(sec2x+cosec2x)dxI = \int (\sec^2 x + \operatorname{cosec}^2 x) \, dx

Step 6: Integrate each term separately using standard integral formulas. We know that sec2xdx=tanx+C\int \sec^2 x \, dx = \tan x + C and cosec2xdx=cotx+C\int \operatorname{cosec}^2 x \, dx = -\cot x + C. I=sec2xdx+cosec2xdxI = \int \sec^2 x \, dx + \int \operatorname{cosec}^2 x \, dx I=tanxcotx+CI = \tan x - \cot x + C where CC is the constant of integration.

Alternatively, the result can also be expressed as 2cot(2x)+C-2 \cot(2x) + C, as tanxcotx=sinxcosxcosxsinx=sin2xcos2xsinxcosx=(cos2xsin2x)12(2sinxcosx)=cos(2x)12sin(2x)=2cot(2x)\tan x - \cot x = \frac{\sin x}{\cos x} - \frac{\cos x}{\sin x} = \frac{\sin^2 x - \cos^2 x}{\sin x \cos x} = \frac{-(\cos^2 x - \sin^2 x)}{\frac{1}{2}(2\sin x \cos x)} = \frac{-\cos(2x)}{\frac{1}{2}\sin(2x)} = -2 \cot(2x).