Question
Question: Integration of sec square x cosecx square x...
Integration of sec square x cosecx square x
tan x - cot x + C
Solution
To integrate sec2xcosec2x, we can use trigonometric identities.
The given integral is: I=∫sec2xcosec2xdx
Step 1: Rewrite sec2x and cosec2x in terms of sinx and cosx. We know that secx=cosx1 and cosecx=sinx1. So, sec2x=cos2x1 and cosec2x=sin2x1.
Substitute these into the integral: I=∫cos2x1⋅sin2x1dx I=∫sin2xcos2x1dx
Step 2: Use the fundamental trigonometric identity sin2x+cos2x=1 in the numerator. We can replace the numerator '1' with sin2x+cos2x: I=∫sin2xcos2xsin2x+cos2xdx
Step 3: Split the fraction into two separate terms. I=∫(sin2xcos2xsin2x+sin2xcos2xcos2x)dx
Step 4: Simplify each term. I=∫(cos2x1+sin2x1)dx
Step 5: Rewrite the terms using sec2x and cosec2x. I=∫(sec2x+cosec2x)dx
Step 6: Integrate each term separately using standard integral formulas. We know that ∫sec2xdx=tanx+C and ∫cosec2xdx=−cotx+C. I=∫sec2xdx+∫cosec2xdx I=tanx−cotx+C where C is the constant of integration.
Alternatively, the result can also be expressed as −2cot(2x)+C, as tanx−cotx=cosxsinx−sinxcosx=sinxcosxsin2x−cos2x=21(2sinxcosx)−(cos2x−sin2x)=21sin(2x)−cos(2x)=−2cot(2x).