Solveeit Logo

Question

Question: Integration of sec inversex...

Integration of sec inversex

Answer

x sec^{-1}(x) - sgn(x) ln|x + sqrt(x^2-1)| + C

Explanation

Solution

To integrate sec1(x)\sec^{-1}(x), we use the method of integration by parts.

Let I=sec1(x)dxI = \int \sec^{-1}(x) dx.
We can write this as I=sec1(x)1dxI = \int \sec^{-1}(x) \cdot 1 dx.

Choose u=sec1(x)u = \sec^{-1}(x) and dv=1dxdv = 1 dx.
Then, we find dudu and vv:
du=ddx(sec1(x))dx=1xx21dxdu = \frac{d}{dx}(\sec^{-1}(x)) dx = \frac{1}{|x|\sqrt{x^2-1}} dx
v=1dx=xv = \int 1 dx = x

Now, apply the integration by parts formula udv=uvvdu\int u dv = uv - \int v du:
I=sec1(x)xx1xx21dxI = \sec^{-1}(x) \cdot x - \int x \cdot \frac{1}{|x|\sqrt{x^2-1}} dx
I=xsec1(x)xxx21dxI = x \sec^{-1}(x) - \int \frac{x}{|x|\sqrt{x^2-1}} dx

The term xx\frac{x}{|x|} is equal to sgn(x)\text{sgn}(x) (the sign function), which is 11 for x>0x>0 and 1-1 for x<0x<0.
Since the domain of sec1(x)\sec^{-1}(x) is (,1][1,)(-\infty, -1] \cup [1, \infty), we consider two cases for xx:

Case 1: x>1x > 1
In this case, x=x|x| = x, so xx=1\frac{x}{|x|} = 1.
I=xsec1(x)1x21dxI = x \sec^{-1}(x) - \int \frac{1}{\sqrt{x^2-1}} dx
The integral 1x2a2dx=lnx+x2a2+C\int \frac{1}{\sqrt{x^2-a^2}} dx = \ln|x + \sqrt{x^2-a^2}| + C. Here a=1a=1.
So, 1x21dx=lnx+x21\int \frac{1}{\sqrt{x^2-1}} dx = \ln|x + \sqrt{x^2-1}|.
Since x>1x > 1, x+x21x + \sqrt{x^2-1} is always positive, so x+x21=x+x21|x + \sqrt{x^2-1}| = x + \sqrt{x^2-1}.
Thus, for x>1x > 1:
I=xsec1(x)ln(x+x21)+C1I = x \sec^{-1}(x) - \ln(x + \sqrt{x^2-1}) + C_1

Case 2: x<1x < -1
In this case, x=x|x| = -x, so xx=1\frac{x}{|x|} = -1.
I=xsec1(x)1x21dxI = x \sec^{-1}(x) - \int \frac{-1}{\sqrt{x^2-1}} dx
I=xsec1(x)+1x21dxI = x \sec^{-1}(x) + \int \frac{1}{\sqrt{x^2-1}} dx
I=xsec1(x)+lnx+x21+C2I = x \sec^{-1}(x) + \ln|x + \sqrt{x^2-1}| + C_2
For x<1x < -1, x+x21x + \sqrt{x^2-1} is negative (e.g., if x=2x=-2, x+x21=2+30.268x+\sqrt{x^2-1} = -2+\sqrt{3} \approx -0.268).
So, x+x21=(x+x21)|x + \sqrt{x^2-1}| = -(x + \sqrt{x^2-1}).
Thus, for x<1x < -1:
I=xsec1(x)+ln((x+x21))+C2I = x \sec^{-1}(x) + \ln(-(x + \sqrt{x^2-1})) + C_2

Combining the cases:
We can express the result in a single general form using the sign function, sgn(x)\text{sgn}(x):
The integral xxx21dx=sgn(x)x21dx\int \frac{x}{|x|\sqrt{x^2-1}} dx = \int \frac{\text{sgn}(x)}{\sqrt{x^2-1}} dx.
If x>1x > 1, this is 1x21dx=lnx+x21\int \frac{1}{\sqrt{x^2-1}} dx = \ln|x + \sqrt{x^2-1}|.
If x<1x < -1, this is 1x21dx=lnx+x21\int \frac{-1}{\sqrt{x^2-1}} dx = -\ln|x + \sqrt{x^2-1}|.
So, sgn(x)x21dx=sgn(x)lnx+x21\int \frac{\text{sgn}(x)}{\sqrt{x^2-1}} dx = \text{sgn}(x) \ln|x + \sqrt{x^2-1}|.

Substituting this back into the main integral:
I=xsec1(x)sgn(x)lnx+x21+CI = x \sec^{-1}(x) - \text{sgn}(x) \ln|x + \sqrt{x^2-1}| + C

This form correctly covers both cases.
For x>1x>1, sgn(x)=1\text{sgn}(x)=1, so I=xsec1(x)ln(x+x21)+CI = x \sec^{-1}(x) - \ln(x + \sqrt{x^2-1}) + C.
For x<1x<-1, sgn(x)=1\text{sgn}(x)=-1, so I=xsec1(x)(1)lnx+x21+C=xsec1(x)+lnx+x21+CI = x \sec^{-1}(x) - (-1) \ln|x + \sqrt{x^2-1}| + C = x \sec^{-1}(x) + \ln|x + \sqrt{x^2-1}| + C.

The final answer is xsec1(x)sgn(x)lnx+x21+Cx \sec^{-1}(x) - \text{sgn}(x) \ln|x + \sqrt{x^2-1}| + C.

Explanation of the solution:

The integral of sec1(x)\sec^{-1}(x) is found using integration by parts. Let u=sec1(x)u = \sec^{-1}(x) and dv=dxdv = dx. This gives du=1xx21dxdu = \frac{1}{|x|\sqrt{x^2-1}} dx and v=xv = x. Applying the formula udv=uvvdu\int u dv = uv - \int v du, we get xsec1(x)xxx21dxx \sec^{-1}(x) - \int \frac{x}{|x|\sqrt{x^2-1}} dx. The term xx\frac{x}{|x|} is sgn(x)\text{sgn}(x). The remaining integral sgn(x)x21dx\int \frac{\text{sgn}(x)}{\sqrt{x^2-1}} dx evaluates to sgn(x)lnx+x21\text{sgn}(x) \ln|x + \sqrt{x^2-1}|. Combining these, the result is xsec1(x)sgn(x)lnx+x21+Cx \sec^{-1}(x) - \text{sgn}(x) \ln|x + \sqrt{x^2-1}| + C.