Question
Question: Integration of : \[\int {\dfrac{{\cos x - \cos 2x}}{{1 - \cos x}}} dx\]?...
Integration of : ∫1−cosxcosx−cos2xdx?
Solution
To solve this integration, we will first convert the whole expression in terms of cosnx. For that, we will first convert cos2x and write it in terms of cosx using the formula cos2x=2cos2x−1. After that, we will have a quadratic equation in the numerator. Now, we will simplify the numerator by factorising and then cancel out some of the terms from numerator and denominator. After cancellation, we will be left with some terms in the numerator and then we will integrate them using the integration formulas and obtain our answer.
Complete step by step answer:
We need to integrate ∫1−cosxcosx−cos2xdx
Let I=∫1−cosxcosx−cos2xdx
Now, convert this expression in terms of cosnx.
Using the formula cos2x=2cos2x−1, we have
⇒I=∫1−cosxcosx−(2cos2x−1)dx
Opening the brackets, we get
⇒I=∫1−cosxcosx−2cos2x+1dx
Taking the negative sign common from the numerator and denominator respectively, we get
⇒I=∫(−)(−1+cosx)(−)(−cosx+2cos2x−1)dx
Cancelling out the negative sign, we get
⇒I=∫(−1+cosx)(−cosx+2cos2x−1)dx
Rearranging the terms, we get
⇒I=∫(cosx−1)(2cos2x−cosx−1)dx
We will factorise the numerator using Splitting the middle term formula.
We can write cosx as 2cosx−cosx
Hence, writing cosx as 2cosx−cosx, we get
⇒I=∫(cosx−1)(2cos2x−(2cosx−cosx)−1)dx
Now, opening the brackets in the numerator, we get
⇒I=∫(cosx−1)(2cos2x−2cosx+cosx−1)dx
Now, combing first two terms and the last two terms together in the numerator, we get
⇒I=∫(cosx−1)(2cos2x−2cosx)+(cosx−1)dx
Taking 2cosx common from the first two terms, we get
⇒I=∫(cosx−1)(2cosx)(cosx−1)+(cosx−1)dx
Using a=(1)(a), we can write cosx−1 as (1)(cosx−1). Hence, our expression becomes
⇒I=∫(cosx−1)(2cosx)(cosx−1)+(1)(cosx−1)dx
Now, taking (cosx−1) common from the numerator, we get
⇒I=∫(cosx−1)(cosx−1)(2cosx+1)dx
Now, cancelling the term (cosx−1) from the numerator and denominator, we get
⇒I=∫(2cosx+1)dx
Now, using ∫(f(x)+g(x))dx=∫f(x)dx+∫g(x)dx, we get
⇒I=∫(2cosx)dx+∫(1)dx
Using the property ∫(c.f(x))dx=c∫(f(x))dx, where c is a constant, we get
⇒I=2∫(cosx)dx+∫(1)dx
Now, using ∫(cosx)dx=sinx+c and ∫(m)dx=mx+c, where m and c are the constant terms, we get
⇒I=2(sinx+c1)+(1.x)+c2, where c1 and c2 are constant terms.
Opening the brackets, we get
⇒I=2sinx+2c1+x+c2, where c1 and c2 are constant terms.
Now combining the constant terms, we get
⇒I=2sinx+x+(2c1+c2), where c1 and c2 are constant terms.
⇒I=2sinx+x+c, where c=(2c1+c2), where c1 and c2 are constant terms.
Hence, we get I=2sinx+x+c, where c is a constant term.
Therefore, ∫1−cosxcosx−cos2xdx=2sinx+x+c, where c is a constant term.
Note: The indefinite integrals of certain functions may have more than one answer in different forms. We must remember some special types of integration methods like the one used in the question to solve complex problems with ease. However, all these forms are correct and interchangeable into one another. We should not forget to add an arbitrary constant to the answer of the indefinite integral. Indefinite integral gives us the family of curves as we don’t know the exact value of the arbitrary constant.