Solveeit Logo

Question

Question: integration of cube root of tanx...

integration of cube root of tanx

Answer

\int (\tan x)^{1/3}dx=\frac{(\tan x)^{4/3}}{2};_2F_1\Bigl(\frac{2}{3},1;\frac{5}{3};-\tan^2x\Bigr)+C.

Explanation

Solution

We will show one acceptable solution. One may begin by writing

I=(tanx)1/3dx.I=\int (\tan x)^{1/3}\,dx.

A useful substitution is to let

t=tanx3tanx=t3.t=\sqrt[3]{\tan x}\quad\Longrightarrow\quad \tan x=t^3.

Differentiate with respect to xx:

ddx(t3)=3t2dtdx=sec2xdx=3t2sec2xdt.\frac{d}{dx}(t^3)=3t^2\frac{dt}{dx}=\sec^2x\quad\Longrightarrow\quad dx=\frac{3t^2}{\sec^2x}\,dt.

Also note that

(tanx)1/3=tandsec2x=1+tan2x=1+t6.(\tan x)^{1/3}=t\quad \text{and}\quad \sec^2x=1+\tan^2x=1+t^6.

Thus the integral becomes

I=tdx=t3t21+t6dt=3t31+t6dt.I=\int t\,dx=\int t\cdot\frac{3t^2}{1+t^6}\,dt=3\int\frac{t^3}{1+t^6}\,dt.

Now, we recognize the standard integral

xm11+xndx=xmn  2F1(mn,1;1+mn;xn)+C,provided m>0,\int \frac{x^{m-1}}{1+x^n}\,dx=\frac{x^m}{n}\;_2F_1\Bigl(\frac{m}{n},1;1+\frac{m}{n};-x^n\Bigr)+C,\quad \text{provided }m>0,

with m1=3m-1=3 (so m=4m=4) and n=6n=6.

Thus

t31+t6dt=t46  2F1(46,1;1+46;t6)+C=t46  2F1(23,1;53;t6)+C.\int\frac{t^3}{1+t^6}\,dt=\frac{t^4}{6}\;_2F_1\Bigl(\frac{4}{6},1;1+\frac{4}{6};-t^6\Bigr)+C =\frac{t^4}{6}\;_2F_1\Bigl(\frac{2}{3},1;\frac{5}{3};-t^6\Bigr)+C.

Returning to our expression for II, we have

I=3t46  2F1(23,1;53;t6)+C=t42  2F1(23,1;53;t6)+C.I=3\cdot \frac{t^4}{6}\;_2F_1\Bigl(\frac{2}{3},1;\frac{5}{3};-t^6\Bigr)+C =\frac{t^4}{2}\;_2F_1\Bigl(\frac{2}{3},1;\frac{5}{3};-t^6\Bigr)+C.

Finally, substituting back t=tanx3t=\sqrt[3]{\tan x} with t4=(tanx)4/3t^4=(\tan x)^{4/3} and t6=tan2xt^6=\tan^2x, we obtain

(tanx)1/3dx=(tanx)4/32  2F1(23,1;53;tan2x)+C.\int (\tan x)^{1/3}dx=\frac{(\tan x)^{4/3}}{2}\;_2F_1\Bigl(\frac{2}{3},1;\frac{5}{3};-\tan^2x\Bigr)+C.

Minimal (core) explanation:

  1. Substitute t=tanx3t=\sqrt[3]{\tan x} so that tanx=t3\tan x=t^3 and dx=3t21+t6dtdx=\frac{3t^2}{1+t^6}\,dt.
  2. Then the integral becomes 3t31+t6dt3\int \frac{t^3}{1+t^6}\,dt.
  3. Use the formula xm11+xndx=xmn  2F1(mn,1;1+mn;xn)+C,\int \frac{x^{m-1}}{1+x^n}\,dx=\frac{x^m}{n}\;_2F_1\Bigl(\frac{m}{n},1;1+\frac{m}{n};-x^n\Bigr)+C, with m=4,  n=6m=4,\; n=6.
  4. Back-substitute t=tanx3t=\sqrt[3]{\tan x} to get the final answer.