Question
Question: integration of cube root of tanx...
integration of cube root of tanx
Answer
\int (\tan x)^{1/3}dx=\frac{(\tan x)^{4/3}}{2};_2F_1\Bigl(\frac{2}{3},1;\frac{5}{3};-\tan^2x\Bigr)+C.
Explanation
Solution
We will show one acceptable solution. One may begin by writing
I=∫(tanx)1/3dx.A useful substitution is to let
t=3tanx⟹tanx=t3.Differentiate with respect to x:
dxd(t3)=3t2dxdt=sec2x⟹dx=sec2x3t2dt.Also note that
(tanx)1/3=tandsec2x=1+tan2x=1+t6.Thus the integral becomes
I=∫tdx=∫t⋅1+t63t2dt=3∫1+t6t3dt.Now, we recognize the standard integral
∫1+xnxm−1dx=nxm2F1(nm,1;1+nm;−xn)+C,provided m>0,with m−1=3 (so m=4) and n=6.
Thus
∫1+t6t3dt=6t42F1(64,1;1+64;−t6)+C=6t42F1(32,1;35;−t6)+C.Returning to our expression for I, we have
I=3⋅6t42F1(32,1;35;−t6)+C=2t42F1(32,1;35;−t6)+C.Finally, substituting back t=3tanx with t4=(tanx)4/3 and t6=tan2x, we obtain
∫(tanx)1/3dx=2(tanx)4/32F1(32,1;35;−tan2x)+C.Minimal (core) explanation:
- Substitute t=3tanx so that tanx=t3 and dx=1+t63t2dt.
- Then the integral becomes 3∫1+t6t3dt.
- Use the formula ∫1+xnxm−1dx=nxm2F1(nm,1;1+nm;−xn)+C, with m=4,n=6.
- Back-substitute t=3tanx to get the final answer.