Question
Question: Integration of 3x^2+9x+1/2x+1...
Integration of 3x^2+9x+1/2x+1
\frac{3x^2}{4} + \frac{15x}{4} - \frac{11}{8} \ln|2x+1| + C
Solution
The problem asks for the integration of the expression 2x+13x2+9x+1.
Since the degree of the numerator is greater than or equal to the degree of the denominator, we first perform polynomial long division.
Step 1: Polynomial Long Division
Divide 3x2+9x+1 by 2x+1.
So, we can write the expression as: 2x+13x2+9x+1=23x+415−2x+111/4
Step 2: Integration
Now, we integrate each term: ∫(23x+415−2x+111/4)dx We can split this into three separate integrals: ∫23xdx+∫415dx−∫4(2x+1)11dx Apply the power rule for integration ∫xndx=n+1xn+1+C and the rule for ∫ax+b1dx=a1ln∣ax+b∣+C.
-
∫23xdx=23⋅1+1x1+1=23⋅2x2=43x2
-
∫415dx=415x
-
∫4(2x+1)11dx=411∫2x+11dx Using the formula ∫ax+b1dx=a1ln∣ax+b∣, here a=2 and b=1. So, 411⋅21ln∣2x+1∣=811ln∣2x+1∣
Combining these results and adding the constant of integration C: ∫2x+13x2+9x+1dx=43x2+415x−811ln∣2x+1∣+C