Solveeit Logo

Question

Question: Integration of 3x^2+9x+1/2x+1...

Integration of 3x^2+9x+1/2x+1

Answer

\frac{3x^2}{4} + \frac{15x}{4} - \frac{11}{8} \ln|2x+1| + C

Explanation

Solution

The problem asks for the integration of the expression 3x2+9x+12x+1\frac{3x^2+9x+1}{2x+1}.

Since the degree of the numerator is greater than or equal to the degree of the denominator, we first perform polynomial long division.

Step 1: Polynomial Long Division

Divide 3x2+9x+13x^2+9x+1 by 2x+12x+1.

So, we can write the expression as: 3x2+9x+12x+1=32x+15411/42x+1\frac{3x^2+9x+1}{2x+1} = \frac{3}{2}x + \frac{15}{4} - \frac{11/4}{2x+1}

Step 2: Integration

Now, we integrate each term: (32x+15411/42x+1)dx\int \left( \frac{3}{2}x + \frac{15}{4} - \frac{11/4}{2x+1} \right) dx We can split this into three separate integrals: 32xdx+154dx114(2x+1)dx\int \frac{3}{2}x \, dx + \int \frac{15}{4} \, dx - \int \frac{11}{4(2x+1)} \, dx Apply the power rule for integration xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C and the rule for 1ax+bdx=1alnax+b+C\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b| + C.

  1. 32xdx=32x1+11+1=32x22=3x24\int \frac{3}{2}x \, dx = \frac{3}{2} \cdot \frac{x^{1+1}}{1+1} = \frac{3}{2} \cdot \frac{x^2}{2} = \frac{3x^2}{4}

  2. 154dx=154x\int \frac{15}{4} \, dx = \frac{15}{4}x

  3. 114(2x+1)dx=11412x+1dx\int \frac{11}{4(2x+1)} \, dx = \frac{11}{4} \int \frac{1}{2x+1} \, dx Using the formula 1ax+bdx=1alnax+b\int \frac{1}{ax+b} dx = \frac{1}{a} \ln|ax+b|, here a=2a=2 and b=1b=1. So, 11412ln2x+1=118ln2x+1\frac{11}{4} \cdot \frac{1}{2} \ln|2x+1| = \frac{11}{8} \ln|2x+1|

Combining these results and adding the constant of integration CC: 3x2+9x+12x+1dx=3x24+15x4118ln2x+1+C\int \frac{3x^2+9x+1}{2x+1} \, dx = \frac{3x^2}{4} + \frac{15x}{4} - \frac{11}{8} \ln|2x+1| + C