Solveeit Logo

Question

Question: Integration of 1/sin(x-a)cos(x-b)...

Integration of 1/sin(x-a)cos(x-b)

Answer

1cos(ba)lnsin(xa)cos(xb)+C\frac{1}{\cos(b-a)} \ln\left|\frac{\sin(x-a)}{\cos(x-b)}\right| + C

Explanation

Solution

To integrate the expression 1sin(xa)cos(xb)\frac{1}{\sin(x-a)\cos(x-b)}, we use a trigonometric manipulation in the numerator.

Let the given integral be II. I=1sin(xa)cos(xb)dxI = \int \frac{1}{\sin(x-a)\cos(x-b)} dx

We observe the arguments of the trigonometric functions are (xa)(x-a) and (xb)(x-b). Their difference is (xa)(xb)=ba(x-a) - (x-b) = b-a. We can introduce cos(ba)\cos(b-a) in the numerator, as it is a constant with respect to xx. To do this, we multiply and divide by cos(ba)\cos(b-a). I=1cos(ba)cos(ba)sin(xa)cos(xb)dxI = \frac{1}{\cos(b-a)} \int \frac{\cos(b-a)}{\sin(x-a)\cos(x-b)} dx

Now, we use the identity ba=(xa)(xb)b-a = (x-a) - (x-b). Let P=xaP = x-a and Q=xbQ = x-b. The numerator becomes cos(PQ)\cos(P-Q). Using the trigonometric identity cos(PQ)=cosPcosQ+sinPsinQ\cos(P-Q) = \cos P \cos Q + \sin P \sin Q: cos((xa)(xb))=cos(xa)cos(xb)+sin(xa)sin(xb)\cos((x-a) - (x-b)) = \cos(x-a)\cos(x-b) + \sin(x-a)\sin(x-b)

Substitute this into the integral: I=1cos(ba)cos(xa)cos(xb)+sin(xa)sin(xb)sin(xa)cos(xb)dxI = \frac{1}{\cos(b-a)} \int \frac{\cos(x-a)\cos(x-b) + \sin(x-a)\sin(x-b)}{\sin(x-a)\cos(x-b)} dx

Now, split the fraction into two terms: I=1cos(ba)(cos(xa)cos(xb)sin(xa)cos(xb)+sin(xa)sin(xb)sin(xa)cos(xb))dxI = \frac{1}{\cos(b-a)} \int \left( \frac{\cos(x-a)\cos(x-b)}{\sin(x-a)\cos(x-b)} + \frac{\sin(x-a)\sin(x-b)}{\sin(x-a)\cos(x-b)} \right) dx

Simplify each term: The first term simplifies to cos(xa)sin(xa)=cot(xa)\frac{\cos(x-a)}{\sin(x-a)} = \cot(x-a). The second term simplifies to sin(xb)cos(xb)=tan(xb)\frac{\sin(x-b)}{\cos(x-b)} = \tan(x-b).

So the integral becomes: I=1cos(ba)(cot(xa)+tan(xb))dxI = \frac{1}{\cos(b-a)} \int (\cot(x-a) + \tan(x-b)) dx

Now, integrate term by term using the standard integral formulas: cotudu=lnsinu+C\int \cot u du = \ln|\sin u| + C tanudu=lncosu+C\int \tan u du = -\ln|\cos u| + C

I=1cos(ba)[lnsin(xa)lncos(xb)]+CI = \frac{1}{\cos(b-a)} [\ln|\sin(x-a)| - \ln|\cos(x-b)|] + C

Using the logarithm property lnMlnN=ln(MN)\ln M - \ln N = \ln\left(\frac{M}{N}\right): I=1cos(ba)lnsin(xa)cos(xb)+CI = \frac{1}{\cos(b-a)} \ln\left|\frac{\sin(x-a)}{\cos(x-b)}\right| + C

This solution is valid provided cos(ba)0\cos(b-a) \neq 0. If cos(ba)=0\cos(b-a) = 0, then ba=(2n+1)π2b-a = (2n+1)\frac{\pi}{2} for some integer nn, which leads to a special case where the denominator simplifies differently (e.g., to sin2(xa)\sin^2(x-a) or cos2(xa)\cos^2(x-a)).

Explanation of the solution: The integral is solved by introducing a constant trigonometric term, cos(ba)\cos(b-a), in the numerator. This term is then expanded using the angle subtraction formula for cosine, cos(PQ)=cosPcosQ+sinPsinQ\cos(P-Q) = \cos P \cos Q + \sin P \sin Q, where P=xaP=x-a and Q=xbQ=x-b. The expanded numerator is then divided by the original denominator, which results in a sum of cot(xa)\cot(x-a) and tan(xb)\tan(x-b) terms. These terms are then integrated separately using standard integration formulas for cotangent and tangent, and the results are combined using logarithm properties.