Question
Question: Integration of 1/sin(x-a)cos(x-b)...
Integration of 1/sin(x-a)cos(x-b)
cos(b−a)1lncos(x−b)sin(x−a)+C
Solution
To integrate the expression sin(x−a)cos(x−b)1, we use a trigonometric manipulation in the numerator.
Let the given integral be I. I=∫sin(x−a)cos(x−b)1dx
We observe the arguments of the trigonometric functions are (x−a) and (x−b). Their difference is (x−a)−(x−b)=b−a. We can introduce cos(b−a) in the numerator, as it is a constant with respect to x. To do this, we multiply and divide by cos(b−a). I=cos(b−a)1∫sin(x−a)cos(x−b)cos(b−a)dx
Now, we use the identity b−a=(x−a)−(x−b). Let P=x−a and Q=x−b. The numerator becomes cos(P−Q). Using the trigonometric identity cos(P−Q)=cosPcosQ+sinPsinQ: cos((x−a)−(x−b))=cos(x−a)cos(x−b)+sin(x−a)sin(x−b)
Substitute this into the integral: I=cos(b−a)1∫sin(x−a)cos(x−b)cos(x−a)cos(x−b)+sin(x−a)sin(x−b)dx
Now, split the fraction into two terms: I=cos(b−a)1∫(sin(x−a)cos(x−b)cos(x−a)cos(x−b)+sin(x−a)cos(x−b)sin(x−a)sin(x−b))dx
Simplify each term: The first term simplifies to sin(x−a)cos(x−a)=cot(x−a). The second term simplifies to cos(x−b)sin(x−b)=tan(x−b).
So the integral becomes: I=cos(b−a)1∫(cot(x−a)+tan(x−b))dx
Now, integrate term by term using the standard integral formulas: ∫cotudu=ln∣sinu∣+C ∫tanudu=−ln∣cosu∣+C
I=cos(b−a)1[ln∣sin(x−a)∣−ln∣cos(x−b)∣]+C
Using the logarithm property lnM−lnN=ln(NM): I=cos(b−a)1lncos(x−b)sin(x−a)+C
This solution is valid provided cos(b−a)=0. If cos(b−a)=0, then b−a=(2n+1)2π for some integer n, which leads to a special case where the denominator simplifies differently (e.g., to sin2(x−a) or cos2(x−a)).
Explanation of the solution: The integral is solved by introducing a constant trigonometric term, cos(b−a), in the numerator. This term is then expanded using the angle subtraction formula for cosine, cos(P−Q)=cosPcosQ+sinPsinQ, where P=x−a and Q=x−b. The expanded numerator is then divided by the original denominator, which results in a sum of cot(x−a) and tan(x−b) terms. These terms are then integrated separately using standard integration formulas for cotangent and tangent, and the results are combined using logarithm properties.