Solveeit Logo

Question

Question: Integration of 1 -cos square x .sinx...

Integration of 1 -cos square x .sinx

Answer

(cos^3 x)/3 - cos x + C

Explanation

Solution

The given expression to integrate is (1cos2x)sinx(1 - \cos^2 x) \cdot \sin x.

First, simplify the expression using the trigonometric identity sin2x+cos2x=1\sin^2 x + \cos^2 x = 1.
From this, we can write 1cos2x=sin2x1 - \cos^2 x = \sin^2 x.

Substitute this into the expression:
(1cos2x)sinx=sin2xsinx=sin3x(1 - \cos^2 x) \cdot \sin x = \sin^2 x \cdot \sin x = \sin^3 x.

Now, we need to find the integral of sin3x\sin^3 x.
To integrate sin3x\sin^3 x, we can rewrite it as sin2xsinx\sin^2 x \cdot \sin x.
Again, use the identity sin2x=1cos2x\sin^2 x = 1 - \cos^2 x.

So the integral becomes:

sin3xdx=(1cos2x)sinxdx\int \sin^3 x \, dx = \int (1 - \cos^2 x) \sin x \, dx

Now, use the method of substitution.
Let u=cosxu = \cos x.
Then, differentiate both sides with respect to xx:

dudx=sinx\frac{du}{dx} = -\sin x

This implies du=sinxdxdu = -\sin x \, dx, or sinxdx=du\sin x \, dx = -du.

Substitute uu and dudu into the integral:

(1u2)(du)\int (1 - u^2) (-du) =(1u2)du= - \int (1 - u^2) \, du

Now, integrate term by term:

=(1duu2du)= - \left( \int 1 \, du - \int u^2 \, du \right) =(uu33)+C= - \left( u - \frac{u^3}{3} \right) + C =u+u33+C= -u + \frac{u^3}{3} + C

Finally, substitute back u=cosxu = \cos x:

=cosx+cos3x3+C= -\cos x + \frac{\cos^3 x}{3} + C

The constant of integration CC is added because it is an indefinite integral.