Solveeit Logo

Question

Question: integration -π to π sin(4x) cot(x/2) dx...

integration -π to π sin(4x) cot(x/2) dx

Answer

Explanation

Solution

The integrand f(x)=sin(4x)cot(x/2)f(x) = \sin(4x) \cot(x/2) is an even function because f(x)=sin(4x)cot(x/2)=(sin(4x))(cot(x/2))=f(x)f(-x) = \sin(-4x) \cot(-x/2) = (-\sin(4x))(-\cot(x/2)) = f(x). Therefore, the integral can be written as 20πsin(4x)cot(x/2)dx2 \int_{0}^{\pi} \sin(4x) \cot(x/2) dx. Using the identity cot(x/2)=cscx+cotx\cot(x/2) = \csc x + \cot x, the integrand becomes sin(4x)(cscx+cotx)\sin(4x)(\csc x + \cot x). Expanding sin(4x)=4sinxcosxcos(2x)\sin(4x) = 4\sin x \cos x \cos(2x) and simplifying, we get the integrand as a polynomial in cosx\cos x: 8cos4x+8cos3x4cos2x4cosx8\cos^4 x + 8\cos^3 x - 4\cos^2 x - 4\cos x. The integral is 20π(8cos4x+8cos3x4cos2x4cosx)dx2 \int_{0}^{\pi} (8\cos^4 x + 8\cos^3 x - 4\cos^2 x - 4\cos x) dx. We use the following definite integrals: 0πcosxdx=0\int_{0}^{\pi} \cos x dx = 0 0πcos2xdx=π2\int_{0}^{\pi} \cos^2 x dx = \frac{\pi}{2} 0πcos3xdx=0\int_{0}^{\pi} \cos^3 x dx = 0 0πcos4xdx=3π8\int_{0}^{\pi} \cos^4 x dx = \frac{3\pi}{8} Substituting these values: 2[8(3π8)+8(0)4(π2)4(0)]=2[3π2π]=2π2 \left[ 8 \left(\frac{3\pi}{8}\right) + 8(0) - 4 \left(\frac{\pi}{2}\right) - 4(0) \right] = 2 [3\pi - 2\pi] = 2\pi. The singularity at x=0x=0 is removable as limx0sin(4x)cot(x/2)=8\lim_{x\to 0} \sin(4x) \cot(x/2) = 8.