Solveeit Logo

Question

Chemistry Question on Chemical Kinetics

Integrated rate law equation for a first order gas phase reaction is given by (where PiP_i​ is initial pressure and PtP_t​ is total pressure at time t)

A

k=2.303t×logPi(2PiPt)k = \frac{2.303}{t} \times \log \frac{P_i}{(2P_i - P_t)}

B

k=2.303t×log2Pi(2PiPt)k = \frac{2.303}{t} \times \log \frac{2P_i}{(2P_i - P_t)}

C

k=2.303t×log(2PiPt)Pik = \frac{2.303}{t} \times \log \frac{(2P_i - P_t)}{P_i}

D

k=2.303t×logPi(2PiPt)k = \frac{2.303}{t} \times \log \frac{P_i}{(2P_i - P_t)}

Answer

k=2.303t×logPi(2PiPt)k = \frac{2.303}{t} \times \log \frac{P_i}{(2P_i - P_t)}

Explanation

Solution

Consider the reaction:

AB+CA \rightarrow B + C

Initial pressures:

Pi00P_i \quad 0 \quad 0

After reaction:

PixxxP_i - x \quad x \quad x

Total pressure at time tt:

Pt=Pi+xP_t = P_i + x

Therefore:

Pix=PiPt+PiP_i - x = P_i - P_t + P_i =2PiPt= 2P_i - P_t

Hence,

k=2.303t×logPi2PiPtk = \frac{2.303}{t}\times \log \frac{P_i}{2P_i - P_t}