Solveeit Logo

Question

Question: integrate: x+2/sqrt (4x+x^2)...

integrate: x+2/sqrt (4x+x^2)

Answer

sqrt(x^2+4x) + C

Explanation

Solution

To integrate the given function x+24x+x2\frac{x+2}{\sqrt{4x+x^2}}, we can use a substitution method by observing the relationship between the numerator and the expression inside the square root.

Let the integral be I=x+24x+x2dxI = \int \frac{x+2}{\sqrt{4x+x^2}} dx.

Consider the expression inside the square root in the denominator: 4x+x24x+x^2. Let u=x2+4xu = x^2+4x. Now, find the derivative of uu with respect to xx: dudx=ddx(x2+4x)=2x+4\frac{du}{dx} = \frac{d}{dx}(x^2+4x) = 2x+4. We can factor out 2 from the derivative: du=(2x+4)dx=2(x+2)dxdu = (2x+4)dx = 2(x+2)dx.

From this, we can express (x+2)dx(x+2)dx in terms of dudu: (x+2)dx=12du(x+2)dx = \frac{1}{2}du.

Now, substitute uu and dudu into the integral: I=1u12duI = \int \frac{1}{\sqrt{u}} \cdot \frac{1}{2} du I=12u1/2duI = \frac{1}{2} \int u^{-1/2} du.

Now, integrate u1/2u^{-1/2} with respect to uu using the power rule for integration, xndx=xn+1n+1+C\int x^n dx = \frac{x^{n+1}}{n+1} + C: I=12(u1/2+11/2+1)+CI = \frac{1}{2} \left( \frac{u^{-1/2+1}}{-1/2+1} \right) + C I=12(u1/21/2)+CI = \frac{1}{2} \left( \frac{u^{1/2}}{1/2} \right) + C I=12(2u1/2)+CI = \frac{1}{2} (2u^{1/2}) + C I=u1/2+CI = u^{1/2} + C I=u+CI = \sqrt{u} + C.

Finally, substitute back u=x2+4xu = x^2+4x: I=x2+4x+CI = \sqrt{x^2+4x} + C.

To verify the result, differentiate x2+4x\sqrt{x^2+4x}: ddx(x2+4x)=12x2+4xddx(x2+4x)\frac{d}{dx}(\sqrt{x^2+4x}) = \frac{1}{2\sqrt{x^2+4x}} \cdot \frac{d}{dx}(x^2+4x) =12x2+4x(2x+4)= \frac{1}{2\sqrt{x^2+4x}} \cdot (2x+4) =2(x+2)2x2+4x= \frac{2(x+2)}{2\sqrt{x^2+4x}} =x+2x2+4x= \frac{x+2}{\sqrt{x^2+4x}}. This matches the original integrand, confirming the solution.

The final answer is x2+4x+C\boxed{\sqrt{x^2+4x} + C}.

Explanation of the solution: The integral x+24x+x2dx\int \frac{x+2}{\sqrt{4x+x^2}} dx is solved by recognizing that the numerator (x+2)(x+2) is directly related to the derivative of the term inside the square root, x2+4xx^2+4x. Let u=x2+4xu = x^2+4x. Then du=(2x+4)dx=2(x+2)dxdu = (2x+4)dx = 2(x+2)dx. This means (x+2)dx=12du(x+2)dx = \frac{1}{2}du. Substituting these into the integral transforms it into 1u12du=12u1/2du\int \frac{1}{\sqrt{u}} \cdot \frac{1}{2} du = \frac{1}{2} \int u^{-1/2} du. Integrating u1/2u^{-1/2} gives u1/21/2=2u\frac{u^{1/2}}{1/2} = 2\sqrt{u}. So, the integral becomes 12(2u)+C=u+C\frac{1}{2} (2\sqrt{u}) + C = \sqrt{u} + C. Substituting back u=x2+4xu = x^2+4x yields the final result x2+4x+C\sqrt{x^2+4x} + C.