Solveeit Logo

Question

Question: integrate: x+2/sqrt (4x-x^2)...

integrate: x+2/sqrt (4x-x^2)

Answer

-\sqrt{4x-x^2} + 4 \arcsin\left(\frac{x-2}{2}\right) + C

Explanation

Solution

The integral to be evaluated is I=x+24xx2dxI = \int \frac{x+2}{\sqrt{4x-x^2}} dx.

This is an integral of the form Px+Qax2+bx+cdx\int \frac{Px+Q}{\sqrt{ax^2+bx+c}} dx. The general strategy is to express the numerator Px+QPx+Q as a linear combination of the derivative of the quadratic expression in the denominator (ax2+bx+cax^2+bx+c) and a constant term.

Step 1: Express the numerator in terms of the derivative of the quadratic expression. Let the quadratic expression in the denominator be f(x)=4xx2f(x) = 4x-x^2. The derivative of f(x)f(x) is f(x)=42xf'(x) = 4-2x. We want to write the numerator x+2x+2 in the form A(42x)+BA(4-2x) + B. Comparing coefficients: For the xx term: 1=2A    A=121 = -2A \implies A = -\frac{1}{2}. For the constant term: 2=4A+B2 = 4A + B. Substitute A=12A = -\frac{1}{2} into the constant term equation: 2=4(12)+B2 = 4\left(-\frac{1}{2}\right) + B 2=2+B2 = -2 + B B=4B = 4. So, we can write x+2=12(42x)+4x+2 = -\frac{1}{2}(4-2x) + 4.

Step 2: Split the integral into two simpler integrals. Substitute the expression for x+2x+2 back into the integral: I=12(42x)+44xx2dxI = \int \frac{-\frac{1}{2}(4-2x) + 4}{\sqrt{4x-x^2}} dx I=1242x4xx2dx+414xx2dxI = -\frac{1}{2} \int \frac{4-2x}{\sqrt{4x-x^2}} dx + 4 \int \frac{1}{\sqrt{4x-x^2}} dx Let I1=1242x4xx2dxI_1 = -\frac{1}{2} \int \frac{4-2x}{\sqrt{4x-x^2}} dx and I2=414xx2dxI_2 = 4 \int \frac{1}{\sqrt{4x-x^2}} dx.

Step 3: Evaluate the first integral I1I_1. For I1=1242x4xx2dxI_1 = -\frac{1}{2} \int \frac{4-2x}{\sqrt{4x-x^2}} dx, let u=4xx2u = 4x-x^2. Then, du=(42x)dxdu = (4-2x)dx. The integral becomes: I1=12duu=12u1/2duI_1 = -\frac{1}{2} \int \frac{du}{\sqrt{u}} = -\frac{1}{2} \int u^{-1/2} du Using the power rule for integration undu=un+1n+1+C\int u^n du = \frac{u^{n+1}}{n+1} + C: I1=12(u1/2+11/2+1)+C1I_1 = -\frac{1}{2} \left( \frac{u^{-1/2+1}}{-1/2+1} \right) + C_1 I1=12(u1/21/2)+C1I_1 = -\frac{1}{2} \left( \frac{u^{1/2}}{1/2} \right) + C_1 I1=12(2u)+C1=u+C1I_1 = -\frac{1}{2} (2\sqrt{u}) + C_1 = -\sqrt{u} + C_1 Substitute back u=4xx2u = 4x-x^2: I1=4xx2+C1I_1 = -\sqrt{4x-x^2} + C_1.

Step 4: Evaluate the second integral I2I_2. For I2=414xx2dxI_2 = 4 \int \frac{1}{\sqrt{4x-x^2}} dx, we need to complete the square for the quadratic expression 4xx24x-x^2 in the denominator. 4xx2=(x24x)4x-x^2 = -(x^2-4x) To complete the square for x24xx^2-4x, we add and subtract (4/2)2=4(4/2)^2 = 4: x24x=(x24x+4)4=(x2)24x^2-4x = (x^2-4x+4) - 4 = (x-2)^2 - 4. So, 4xx2=((x2)24)=4(x2)24x-x^2 = -((x-2)^2 - 4) = 4 - (x-2)^2. Now substitute this into I2I_2: I2=414(x2)2dxI_2 = 4 \int \frac{1}{\sqrt{4-(x-2)^2}} dx This integral is of the standard form 1a2y2dy=arcsin(ya)+C\int \frac{1}{\sqrt{a^2-y^2}} dy = \arcsin\left(\frac{y}{a}\right) + C. Here, a2=4    a=2a^2=4 \implies a=2, and y=(x2)y=(x-2). So, I2=4arcsin(x22)+C2I_2 = 4 \arcsin\left(\frac{x-2}{2}\right) + C_2.

Step 5: Combine the results of I1I_1 and I2I_2. I=I1+I2=4xx2+4arcsin(x22)+CI = I_1 + I_2 = -\sqrt{4x-x^2} + 4 \arcsin\left(\frac{x-2}{2}\right) + C, where C=C1+C2C = C_1+C_2.

The final answer is 4xx2+4arcsin(x22)+C-\sqrt{4x-x^2} + 4 \arcsin\left(\frac{x-2}{2}\right) + C.

Explanation of the solution: The integral x+24xx2dx\int \frac{x+2}{\sqrt{4x-x^2}} dx is solved by first decomposing the numerator x+2x+2 into two parts: one part proportional to the derivative of 4xx24x-x^2 (which is 42x4-2x), and a constant part. This decomposition is x+2=12(42x)+4x+2 = -\frac{1}{2}(4-2x) + 4. This allows the original integral to be split into two simpler integrals. The first integral, 12(42x)4xx2dx\int \frac{-\frac{1}{2}(4-2x)}{\sqrt{4x-x^2}} dx, is solved using a simple substitution u=4xx2u = 4x-x^2, yielding 4xx2-\sqrt{4x-x^2}. The second integral, 44xx2dx\int \frac{4}{\sqrt{4x-x^2}} dx, is solved by completing the square in the denominator, transforming 4xx24x-x^2 into 4(x2)24-(x-2)^2. This allows the integral to be recognized as a standard inverse sine form, resulting in 4arcsin(x22)4 \arcsin\left(\frac{x-2}{2}\right). Combining these two results gives the final answer.

Answer: The integral of x+24xx2\frac{x+2}{\sqrt{4x-x^2}} is 4xx2+4arcsin(x22)+C-\sqrt{4x-x^2} + 4 \arcsin\left(\frac{x-2}{2}\right) + C.