Solveeit Logo

Question

Question: integrate: x^2/sqrt (1-x^2)...

integrate: x^2/sqrt (1-x^2)

Answer

12arcsinxx1x22+C\frac{1}{2}\arcsin x - \frac{x\sqrt{1-x^2}}{2} + C

Explanation

Solution

To integrate the given function x21x2\frac{x^2}{\sqrt{1-x^2}}, we use trigonometric substitution.

1. Choose the appropriate substitution: The integrand contains the term 1x2\sqrt{1-x^2}, which suggests the substitution x=sinθx = \sin \theta. From this, we have: dx=cosθdθdx = \cos \theta \, d\theta And 1x2=1sin2θ=cos2θ=cosθ\sqrt{1-x^2} = \sqrt{1-\sin^2 \theta} = \sqrt{\cos^2 \theta} = |\cos \theta|. Assuming the principal value branch for θ\theta (i.e., π2θπ2-\frac{\pi}{2} \le \theta \le \frac{\pi}{2}), cosθ0\cos \theta \ge 0, so 1x2=cosθ\sqrt{1-x^2} = \cos \theta.

2. Substitute into the integral: x21x2dx=(sinθ)2cosθ(cosθdθ)\int \frac{x^2}{\sqrt{1-x^2}} dx = \int \frac{(\sin \theta)^2}{\cos \theta} (\cos \theta \, d\theta) =sin2θdθ= \int \sin^2 \theta \, d\theta

3. Use trigonometric identity to simplify the integrand: We use the power-reduction formula for sin2θ\sin^2 \theta: sin2θ=1cos(2θ)2\sin^2 \theta = \frac{1 - \cos(2\theta)}{2} Substitute this into the integral: 1cos(2θ)2dθ\int \frac{1 - \cos(2\theta)}{2} \, d\theta =12(1cos(2θ))dθ= \frac{1}{2} \int (1 - \cos(2\theta)) \, d\theta

4. Integrate with respect to θ\theta: =12(1dθcos(2θ)dθ)= \frac{1}{2} \left( \int 1 \, d\theta - \int \cos(2\theta) \, d\theta \right) =12(θsin(2θ)2)+C= \frac{1}{2} \left( \theta - \frac{\sin(2\theta)}{2} \right) + C =θ2sin(2θ)4+C= \frac{\theta}{2} - \frac{\sin(2\theta)}{4} + C

5. Convert the result back to xx: We have x=sinθx = \sin \theta, so θ=arcsinx\theta = \arcsin x. For sin(2θ)\sin(2\theta), we use the double angle identity: sin(2θ)=2sinθcosθ\sin(2\theta) = 2 \sin \theta \cos \theta. We know sinθ=x\sin \theta = x. And cosθ=1sin2θ=1x2\cos \theta = \sqrt{1-\sin^2 \theta} = \sqrt{1-x^2} (since cosθ0\cos \theta \ge 0 for the chosen range of θ\theta). So, sin(2θ)=2x1x2\sin(2\theta) = 2x\sqrt{1-x^2}.

Substitute these back into the expression: arcsinx22x1x24+C\frac{\arcsin x}{2} - \frac{2x\sqrt{1-x^2}}{4} + C =arcsinx2x1x22+C= \frac{\arcsin x}{2} - \frac{x\sqrt{1-x^2}}{2} + C

The final answer is 12arcsinxx1x22+C\frac{1}{2}\arcsin x - \frac{x\sqrt{1-x^2}}{2} + C.

Explanation of the solution: The integral x21x2dx\int \frac{x^2}{\sqrt{1-x^2}} dx is solved using the trigonometric substitution x=sinθx = \sin \theta. This transforms the integral into sin2θdθ\int \sin^2 \theta \, d\theta. Using the identity sin2θ=1cos(2θ)2\sin^2 \theta = \frac{1-\cos(2\theta)}{2}, the integral becomes 12(1cos(2θ))dθ\frac{1}{2}\int (1-\cos(2\theta)) \, d\theta. Integrating this yields 12(θsin(2θ)2)+C\frac{1}{2}(\theta - \frac{\sin(2\theta)}{2}) + C. Finally, substituting back θ=arcsinx\theta = \arcsin x and sin(2θ)=2sinθcosθ=2x1x2\sin(2\theta) = 2\sin\theta\cos\theta = 2x\sqrt{1-x^2} gives the result 12arcsinxx1x22+C\frac{1}{2}\arcsin x - \frac{x\sqrt{1-x^2}}{2} + C.