Question
Question: integrate: x^2/sqrt (1-x^2)...
integrate: x^2/sqrt (1-x^2)
21arcsinx−2x1−x2+C
Solution
To integrate the given function 1−x2x2, we use trigonometric substitution.
1. Choose the appropriate substitution: The integrand contains the term 1−x2, which suggests the substitution x=sinθ. From this, we have: dx=cosθdθ And 1−x2=1−sin2θ=cos2θ=∣cosθ∣. Assuming the principal value branch for θ (i.e., −2π≤θ≤2π), cosθ≥0, so 1−x2=cosθ.
2. Substitute into the integral: ∫1−x2x2dx=∫cosθ(sinθ)2(cosθdθ) =∫sin2θdθ
3. Use trigonometric identity to simplify the integrand: We use the power-reduction formula for sin2θ: sin2θ=21−cos(2θ) Substitute this into the integral: ∫21−cos(2θ)dθ =21∫(1−cos(2θ))dθ
4. Integrate with respect to θ: =21(∫1dθ−∫cos(2θ)dθ) =21(θ−2sin(2θ))+C =2θ−4sin(2θ)+C
5. Convert the result back to x: We have x=sinθ, so θ=arcsinx. For sin(2θ), we use the double angle identity: sin(2θ)=2sinθcosθ. We know sinθ=x. And cosθ=1−sin2θ=1−x2 (since cosθ≥0 for the chosen range of θ). So, sin(2θ)=2x1−x2.
Substitute these back into the expression: 2arcsinx−42x1−x2+C =2arcsinx−2x1−x2+C
The final answer is 21arcsinx−2x1−x2+C.
Explanation of the solution: The integral ∫1−x2x2dx is solved using the trigonometric substitution x=sinθ. This transforms the integral into ∫sin2θdθ. Using the identity sin2θ=21−cos(2θ), the integral becomes 21∫(1−cos(2θ))dθ. Integrating this yields 21(θ−2sin(2θ))+C. Finally, substituting back θ=arcsinx and sin(2θ)=2sinθcosθ=2x1−x2 gives the result 21arcsinx−2x1−x2+C.