Solveeit Logo

Question

Question: integrate: x/1+x^2...

integrate: x/1+x^2

Answer

12ln(1+x2)+C\frac{1}{2} \ln(1+x^2) + C

Explanation

Solution

The problem asks to integrate the function x1+x2\frac{x}{1+x^2}.

To solve this integral, we can use the method of substitution.

Let u=1+x2u = 1+x^2.
Now, differentiate uu with respect to xx:
dudx=ddx(1+x2)=0+2x=2x\frac{du}{dx} = \frac{d}{dx}(1+x^2) = 0 + 2x = 2x.
From this, we can write du=2xdxdu = 2x \, dx.

We need to substitute xdxx \, dx in the integral. From du=2xdxdu = 2x \, dx, we get xdx=12dux \, dx = \frac{1}{2} du.

Now, substitute uu and xdxx \, dx into the original integral:

x1+x2dx=1u(12du)\int \frac{x}{1+x^2} \, dx = \int \frac{1}{u} \left(\frac{1}{2} du\right)

We can pull the constant 12\frac{1}{2} out of the integral:

=121udu= \frac{1}{2} \int \frac{1}{u} \, du

The integral of 1u\frac{1}{u} with respect to uu is lnu\ln|u|.

=12lnu+C= \frac{1}{2} \ln|u| + C

Finally, substitute back u=1+x2u = 1+x^2:

=12ln1+x2+C= \frac{1}{2} \ln|1+x^2| + C

Since 1+x21+x^2 is always positive for any real value of xx (because x20x^2 \ge 0, so 1+x211+x^2 \ge 1), we can remove the absolute value sign:

=12ln(1+x2)+C= \frac{1}{2} \ln(1+x^2) + C