Solveeit Logo

Question

Mathematics Question on integral

Integrate the rational function: x(x2+1)(x1)\frac{x}{(x^2+1)(x-1)}

Answer

Let x(x2+1)(x1)=AX+B(x2+1)+c(x1)\frac{x}{(x^2+1)(x-1)} = \frac{AX+B}{(x^2+1)}+\frac{c}{(x-1)}

x = (Ax+B)(x-1)+C (x2+1)

x = Ax2-Ax+Bx-B+Cx2+C

Equating the coefficients of x2 , x, and constant term, we obtain
A + C = 0
−A + B = 1
−B + C = 0
On solving these equations, we obtain

A = -12\frac{1}{2}, B =12\frac{1}{2} and C=12\frac{1}{2}

From equation (1), we obtain

x(x2+1)(x1)=(12x+12)x2+1+12(x1)\frac{x}{(x^2+1)(x-1)}=\frac{\bigg(-\frac{1}{2}x+\frac{1}{2}\bigg)}{x^2+1}+\frac{\frac{1}{2}}{(x-1)}

x(x2+1)(x1)=12x(x2+1dx+121x2+1dx+121x1dx\Rightarrow \int\frac{x}{(x^2+1)(x-1)}=-\frac{1}{2}\int\frac{x}{(x^2+1}dx+\frac{1}{2}\int\frac{1}{x^2+1}dx+\frac{1}{2}\int\frac{1}{x-1}dx

=142xx2+1dx+12tan1x+12logx1+C= -\frac{1}{4}\int\frac{2x}{x^2+1}dx+\frac{1}{2}\tan^{-1}x+\frac{1}{2}\log\mid x-1\mid+C

Consider2xx2+1dx,let(x2+1)=t2xdx=dtConsider \int\frac{2x}{x^2+1}dx, let(x^2+1) = t \Rightarrow 2xdx = dt

2xx2+1dx=dtt=logt=logx2+1\Rightarrow\int\frac{2x}{x^2+1}dx=\int \frac{dt}{t}=\log\mid t\mid=\log\mid x^2+1\mid

x(x2+1)(x1)=14logx2+1+12tan1x+12logx1+C\int\frac{x}{(x^2+1)(x-1)}=-\frac{1}{4}\log\mid x^2+1 \mid+\frac{1}{2}\tan^{-1}x+\frac{1}{2}\log\mid x-1\mid+C

=12logx114logx2+1+12tan1x+C\frac{1}{2}\log\mid x-1\mid-\frac{1}{4}\log\mid x^2+1\mid+\frac{1}{2}\tan^{-1}x+C