Question
Mathematics Question on integral
Integrate the rational function: (x2+1)(x−1)x
Answer
Let (x2+1)(x−1)x=(x2+1)AX+B+(x−1)c
x = (Ax+B)(x-1)+C (x2+1)
x = Ax2-Ax+Bx-B+Cx2+C
Equating the coefficients of x2 , x, and constant term, we obtain
A + C = 0
−A + B = 1
−B + C = 0
On solving these equations, we obtain
A = -21, B =21 and C=21
From equation (1), we obtain
∴(x2+1)(x−1)x=x2+1(−21x+21)+(x−1)21
⇒∫(x2+1)(x−1)x=−21∫(x2+1xdx+21∫x2+11dx+21∫x−11dx
=−41∫x2+12xdx+21tan−1x+21log∣x−1∣+C
Consider∫x2+12xdx,let(x2+1)=t⇒2xdx=dt
⇒∫x2+12xdx=∫tdt=log∣t∣=log∣x2+1∣
∴ ∫(x2+1)(x−1)x=−41log∣x2+1∣+21tan−1x+21log∣x−1∣+C
=21log∣x−1∣−41log∣x2+1∣+21tan−1x+C