Solveeit Logo

Question

Mathematics Question on integral

Integrate the rational function: x(x+1)(x+2)\frac{x}{(x+1)(x+2)}

Answer

Let x(x+1)2(x+2)\frac{x}{(x+1)^2(x+2)} = A(x1)+B(x1)2+C(x+2)\frac{A}{(x-1)}+\frac{B}{(x-1)^2}+\frac{C}{(x+2)}

x = A(x-1)(x+2)+B(x+2)+C(x-1)2
Substituting x = 1, we obtain
B = 13\frac{1}{3}
Equating the coefficients of x2 and constant term, we obtain
A + C = 0
−2A + 2B + C = 0
On solving, we obtain

A = 29\frac{2}{9} and C = -29\frac{2}{9}

x(x+1)2(x+2)=29(x1)+13(x1)229(x+2)\frac{x}{(x+1)^2(x+2)} = \frac{2}{9(x-1)}+\frac{1}{3(x-1)^2}-\frac{2}{9(x+2)}

x(x+1)2(x+2)dx=291(x1)dx+131(x1)2dx291(x+2)dx\Rightarrow \int \frac{x}{(x+1)^2(x+2)}dx = \frac{2}{9}\int\frac{1}{(x-1)}dx+\frac{1}{3}\int \frac{1}{(x-1)^2}dx-\frac{2}{9}\int \frac{1}{(x+2)}dx

=29logx1+13(1x1)29logx+2+C\frac{2}{9} \log\mid x-1\mid+\frac{1}{3}\bigg(\frac{-1}{x-1}\bigg)-\frac{2}{9}\log\mid x+2\mid+C

=29logx1x+213(x1)+C\frac{2}{9}\log\mid\frac{x-1}{x+2}\mid-\frac{1}{3(x-1)}+C