Solveeit Logo

Question

Mathematics Question on integral

Integrate the rational function: x(x1)(x2)(x3)\frac{x}{(x-1)(x-2)(x-3)}

Answer

Let x(x1)(x2)(x3)\frac{x}{(x-1)(x-2)(x-3)} =A(x1)+B(x2)+C(x3)\frac{A}{(x-1)}+\frac{B}{(x-2)}+\frac{C}{(x-3)}

x = A(x-2)(X-3)+B(x-1)(x-3)+C(x-1)(x-2) ...(1)

Substituting x = 1, 2, and 3 respectively in equation (1), we obtain

A = 12\frac{1}{2}, B = -2, and C = 32\frac{3}{2}

x(x1)(x2)(x3)=12(x1)2(x2)+32(x3)\frac{x}{(x-1)(x-2)(x-3)}=\frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)}

\Rightarrow \int\frac{x}{(x-1)(x-2)(x-3)}dx=\int \bigg\\{\frac{1}{2(x-1)}-\frac{2}{(x-2)}+\frac{3}{2(x-3)}\bigg\\}dx

=12logx12logx2+32logx3+C\frac{1}{2}\log\mid x-1 \mid-2\log\mid x-2\mid+\frac{3}{2}\log\mid x-3\mid+C