Solveeit Logo

Question

Mathematics Question on integral

Integrate the rational function: x(x+1)(x+2)\frac{x}{(x+1)(x+2)}

Answer

Let x(x+1)(x+2)=A(x+1)+B(x+2)\frac{x}{(x+1)(x-+2)} = \frac{A}{(x+1)}+\frac{B}{(x+2)}
x=A(x+2)+B(x+1)\Rightarrow x = A(x+2)+B(x+1)
Equating the coefficients of x and constant term, we obtain
A + B = 1
2A + B = 0
On solving, we obtain
A = −1 and B = 2

x(x+1)(x+2)=1(x+1)+2(x+2)\frac{x}{(x+1)(x+2)}=\frac{-1}{(x+1)}+\frac{2}{(x+2)}

x(x+1)(x+2)dx=1(x+1)+2(x+2)dx\Rightarrow \int \frac{x}{(x+1)(x+2)}dx = \int \frac{-1}{(x+1)}+\frac{2}{(x+2)}dx

= logx+1+2logx+2+C- \log \mid x+1 \mid +2\log \mid x+2 \mid+C

= log(x+2)2logx+1+C\log(x+2)^2 -\log \mid x+1 \mid+C

= log(x+2)2(x+1)+C\log(\frac{x+2)^2}{ (x+1)}+C