Solveeit Logo

Question

Mathematics Question on integral

Integrate the rational function: x3+x+1x21\frac {x^3+x+1}{x^2-1}

Answer

It can be seen that the given integrand is not a proper fraction.

Therefore, on dividing (x3 + x + 1) by x2 − 1, we obtain

x3+x+1x21\frac {x^3+x+1}{x^2-1} = x + 2x+1x21\frac {2x+1}{x^2-1}

Let 2x+1x21\frac {2x+1}{x^2-1} = A(x+1)\frac {A}{(x+1)} + B(x1)\frac {B}{(x-1)}

2x+1=A(x1)+B(x+1)2x+1 = A(x-1)+B(x+1) .....(1)

Substituting x = 1 and −1 in equation (1), we obtain

A = 12\frac 12 and B = 32\frac 32

x3+x+1x21\frac {x^3+x+1}{x^2-1} = X + 12(x+1)+32(x1)\frac 12(x+1)+\frac 32(x-1)

∫$$\frac {x^3+x+1}{x^2-1}\ dx = xdx+121(x+1)dx+321(x1)dx∫x dx +\frac 12 ∫\frac {1}{(x+1)}dx+\frac 32 ∫\frac {1}{(x-1)}dx

                          = $\frac {x^2}{2}+\frac 12\ log|x+1|+\frac 32\ log|x-1|+C$