Question
Mathematics Question on integral
Integrate the rational function: (x2+3)(x2+4)(x2+1)(x2+2)
Answer
(x2+3)(x2+4)(x2+1)(x2+2) = 1−(x2+3)(x2+4)(4x2+10)
Let (x2+3)(x2+4)(4x2+10) = (x2+3)Ax+B+(x2+4)Cx+D
4x2+10=(Ax+B)(x2+4)+(Cx+D)(x2+3)
4x2+10=Ax3+4Ax+Bx2+4B+Cx3+3Cx+Dx2+3D
4x2+10=(A+C)x3+(B+D)x2+(4A+3C)x+(4B+3D)
Equating the coefficients of x3,x2,x, and constant term, we obtain
A+C=0
B+D=4
4A+3C=0
4B+3D=10
On solving these equations, we obtain
A=0,B=−2,C=0, and D=6
∴ (x2+3)(x2+4)(4x2+10) =−(x2+3)2+(x2+4)6
(x2+3)(x2+4)(x2+1)(x2+2) = 1−(x2+3)2+(x2+4)6
⇒ ∫$$\frac {(x^2+1)(x^2+2)}{(x^2+3)(x^2+4)}\ dx = ∫[1+(x2+3)2−(x2+4)6]dx
= $∫{1+\frac {2}{x^2+(\sqrt 3)^2}-\frac {6}{x^2+2^2}}dx$
= $x+2(\frac {1}{\sqrt 3}tan^{-1}\frac {x}{\sqrt 3})-6(\frac 12 tan^{-1}\frac x2)+C$
= $x+\frac {2}{\sqrt 3}tan^{-1}\frac { x}{\sqrt 3}-3tan^{-1}\frac x2+C$