Solveeit Logo

Question

Mathematics Question on integral

Integrate the rational function: cos x(1sin x)(2sin x)\frac {cos \ x}{(1-sin\ x)(2-sin\ x)}

Answer

cos x(1sin x)(2sin x)\frac {cos \ x}{(1-sin\ x)(2-sin\ x)}

Let sin x=tcos x dx=dtLet \ sin \ x = t ⇒ cos \ x\ dx = dt

∫$$\frac {cos \ x}{(1-sin\ x)(2-sin\ x)}\ dx= dt(1t)(2t)∫\frac {dt}{(1-t)(2-t)}

LetLet 1(1t)(2t)\frac {1}{(1-t)(2-t)} = A(1t)+B(2t)\frac {A}{(1-t)}+\frac {B}{(2-t)}

1=A(2t)+B(1t)1 = A(2-t)+B(1-t) ...(1) ...(1)

Substituting t=2 and then t=1 in equation (1),we obtainSubstituting\ t = 2 \ and \ then\ t = 1 \ in \ equation \ (1), we\ obtain

A=1 and B=1A = 1\ and\ B = −1

1(1t)(2t)\frac {1}{(1-t)(2-t)} = 1(1t)1(2t)\frac {1}{(1-t)}-\frac {1}{(2-t)}

∫$$\frac {cos \ x}{(1-sin\ x)(2-sin\ x)}\ dx = ∫$$[\frac {1}{(1-t)}-\frac {1}{(2-t)}]\ dt

= log 1t+log 2t+C-log\ |1-t|+log\ |2-t|+C

= log 2t1t+Clog\ |\frac {2-t}{1-t}|+C

= log 2sin x1sin x+Clog\ |\frac {2-sin\ x}{1-sin\ x}|+C