Solveeit Logo

Question

Mathematics Question on integral

Integrate the rational function: 5x(x+1)(x24)\frac {5x}{(x+1)(x^2-4)}

Answer

5x(x+1)(x24)\frac {5x}{(x+1)(x^2-4)}= 5x(x+1)(x+2)(x2)\frac {5x}{(x+1)(x+2)(x-2)}

Let 5x(x+1)(x+2)(x2)\frac {5x}{(x+1)(x+2)(x-2)} = A(x+1)+B(x+2)+C(x2)\frac {A}{(x+1)} +\frac {B}{(x+2)} + \frac {C}{(x-2)}

5x=A(x+2)(x2)+B(x+1)(x2)+C(x+1)(x+2).....(1)5x = A(x+2)(x-2) + B(x+1)(x-2) + C(x+1)(x+2) ….....(1)

Substituting x = −1, −2, and 2 respectively in equation (1), we obtain

A = 53\frac 53, B= 52-\frac {5}{2}, and C = 56\frac 56

5x(x+1)(x+2)(x2)\frac {5x}{(x+1)(x+2)(x-2)} = 53(x+1)52(x+2)+56(x2)\frac {5}{3(x+1)} -\frac {5}{2(x+2)} + \frac {5}{6(x-2)}

∫$$\frac {5x}{(x+1)(x+2)(x-2)} \ dx = 531(x+1)dx521(x+2)dx+561(x2)dx\frac 53 ∫\frac {1}{(x+1)}dx-\frac 52 ∫\frac {1}{(x+2)}dx+\frac 56 ∫\frac {1}{(x-2)}dx

= 53 logx+152 logx+2+56 logx2+C\frac 53\ log|x+1|-\frac 52\ log|x+2|+\frac 56\ log|x-2|+C