Question
Mathematics Question on integral
Integrate the rational function: (x2+1)(x2+3)2x
Answer
(x2+1)(x2+3)2x
Let x2=t⇒2x dx=dt
∴ ∫$$\frac {2x}{(x^2+1)(x^2+3)}dx = ∫(t+1)(t+3)dt ...(1)
Let (t+1)(t+3)dt = (t+1)A+(t+3)B
1=A(t+3)+B(t+1) ...(1)
Substituting t = −3 and t = −1 in equation (1), we obtain
A=21 and B=−21
∴ (t+1)(t+3)1 = 2(t+1)1−2(t+3)1
⇒ ∫$$\frac {2x}{(x^2+1)(x^2+3)}dx = ∫$$[\frac {1}{2(t+1)}-\frac {1}{2(t+3)}]dt
=$\frac 12log\ |(t+1)|-\frac 12log\ |t+3|+C$
=$\frac 12\ log|\frac {t+1}{t+3}|+C$
=$\frac 12\ log|\frac {x^2+1}{x^2+3}|+C$