Solveeit Logo

Question

Mathematics Question on integral

Integrate the rational function: 2x(x2+1)(x2+3)\frac {2x}{(x^2+1)(x^2+3)}

Answer

2x(x2+1)(x2+3)\frac {2x}{(x^2+1)(x^2+3)}

Let x2=t2x dx=dtLet \ x^2 = t ⇒ 2x \ dx = dt

∫$$\frac {2x}{(x^2+1)(x^2+3)}dx = dt(t+1)(t+3)∫\frac {dt}{(t+1)(t+3)} ...(1)

LetLet dt(t+1)(t+3)\frac {dt}{(t+1)(t+3)} = A(t+1)+B(t+3)\frac {A}{(t+1)}+\frac {B}{(t+3)}

1=A(t+3)+B(t+1)1 = A(t+3)+B(t+1) ...(1)

Substituting t = −3 and t = −1 in equation (1), we obtain

A=12 and B=12A = \frac 12\ and \ B = -\frac 12

1(t+1)(t+3)\frac {1}{(t+1)(t+3)} = 12(t+1)12(t+3)\frac {1}{2(t+1)}-\frac {1}{2(t+3)}

∫$$\frac {2x}{(x^2+1)(x^2+3)}dx = ∫$$[\frac {1}{2(t+1)}-\frac {1}{2(t+3)}]dt

                                       =$\frac 12log\ |(t+1)|-\frac 12log\ |t+3|+C$

                                       =$\frac 12\ log|\frac {t+1}{t+3}|+C$

                                       =$\frac 12\ log|\frac {x^2+1}{x^2+3}|+C$