Solveeit Logo

Question

Mathematics Question on integral

Integrate the rational function: 2x3(x21)(2x+3)\frac{2x-3}{(x^2-1)(2x+3)}

Answer

2x3(x21)(2x+3)\frac{2x-3}{(x^2-1)(2x+3)}= 2x3(x+1)(x1)(2x+3)\frac{2x-3}{(x+1)(x-1)(2x+3)}

Let 2x3(x+1)(x1)(2x+3)=A(x+1)B(x1)+C(2x+3)\frac{2x-3}{(x+1)(x-1)(2x+3)}= \frac{A}{(x+1)}\frac{B}{(x-1)}+\frac{C}{(2x+3)}

\Rightarrow (2x-3) = A(x-1)(2x+3)+B(x+1)(2x+3)+C(x+1)(x-1)

\Rightarrow (2x-3) = A(2x2+x-3)+B(2x2+5x+3)+C(x2-1)

\Rightarrow (2x-3) = A(2A+2B+C)x2+(A+5B)x+(-3A+3B-C)

Equating the coefficients of x2 and x, we obtain

B = -110\frac{1}{10}, A = 52\frac{5}{2}, and C = -245\frac{24}{5}

2x3(x+1)(x1)(2x+3)=52(x+1)110(x1)+245(2x+3)\frac{2x-3}{(x+1)(x-1)(2x+3)}= \frac{5}{2(x+1)}\frac{1}{10(x-1)}+\frac{24}{5(2x+3)}

2x3(x+1)(x1)(2x+3)dx=521(x+1)dx1101x1dx2451(2x+3)dx\Rightarrow\int\frac{2x-3}{(x+1)(x-1)(2x+3)}dx= \frac{5}{2}\int\frac{1}{(x+1)}dx-\frac{1}{10}\int\frac{1}{x-1}dx-\frac{24}{5}\int\frac{1}{(2x+3)}dx

= 52logx+1110logx12452log2x+3\frac{5}{2}\log\mid x+1\mid-\frac{1}{10}\log \mid x-1\mid-\frac{24}{5*2}\log\mid 2x+3\mid

=52logx+1110logx1125log2x+3+C\frac{5}{2}\log\mid x+1\mid-\frac{1}{10}\log\mid x-1\mid-\frac{12}{5}\log\mid 2x+3 \mid+C