Question
Mathematics Question on integral
Integrate the rational function: (x2−1)(2x+3)2x−3
Answer
(x2−1)(2x+3)2x−3= (x+1)(x−1)(2x+3)2x−3
Let (x+1)(x−1)(2x+3)2x−3=(x+1)A(x−1)B+(2x+3)C
⇒ (2x-3) = A(x-1)(2x+3)+B(x+1)(2x+3)+C(x+1)(x-1)
⇒ (2x-3) = A(2x2+x-3)+B(2x2+5x+3)+C(x2-1)
⇒ (2x-3) = A(2A+2B+C)x2+(A+5B)x+(-3A+3B-C)
Equating the coefficients of x2 and x, we obtain
B = -101, A = 25, and C = -524
∴ (x+1)(x−1)(2x+3)2x−3=2(x+1)510(x−1)1+5(2x+3)24
⇒∫(x+1)(x−1)(2x+3)2x−3dx=25∫(x+1)1dx−101∫x−11dx−524∫(2x+3)1dx
= 25log∣x+1∣−101log∣x−1∣−5∗224log∣2x+3∣
=25log∣x+1∣−101log∣x−1∣−512log∣2x+3∣+C