Question
Mathematics Question on integral
Integrate the rational function: (1−x)(1+x2)2
Answer
Let (1−x)(1+x2)2 = (1−x)A+(1+x2)Bx+C
2=A(1+x2)+(Bx+C)(1−x)
2=A+Ax2+Bx−Bx+C−Cx
Equating the coefficient of x2, x, and constant term, we obtain
A−B=0
B−C=0
A+C=2
On solving these equations, we obtain
A=1, B=1, and C=1
∴ (1−x)(1+x2)2 = 1−x1 + 1+x2x+1
⇒ ∫$$\frac {2}{(1-x)(1+x^2)} = ∫$$\frac {1}{1-x}\ dx+ ∫$$\frac {x}{1+x^2}\ dx + ∫$$\frac {1}{1+x^2}\ dx
= - $∫$$\frac {1}{1-x}\ dx$ + $\frac 12$$∫$$\frac {2x}{1+x^2}\ dx$ + $∫$$\frac {1}{1+x^2}\ dx$
= -$log\ |x-1|+\frac 12log|1+x^2|+tan^{-1}x+C$