Question
Mathematics Question on integral
Integrate the rational function: x(xn+1)1
Answer
x(xn+1)1
Multiplying numerator and denominator by xn−1 , we obtain
x(xn+1)1 = xn−1x(xn+1)xn−1 = xn(xn+1)xn−1
Let xn=t⇒xn−1dx=dt
∴ ∫$$\frac {1}{x(x^n+1)}\ dx = ∫$$\frac {x^{n-1}}{x^n(x^n+1)} = n1∫t(t+1)1dt
Let t(t+1)1 = tA+(t+1)B
1=A(1+t)+Bt ...(1)
Substituting t=0,−1 in equation (1),we obtain
A=1 and B=−1
∴ t(t+1)1 = t1−(1+t)1
⇒ ∫$$\frac {1}{x(x^n+1)}\ dx = n1 ∫$$[\frac 1t-\frac {1}{(1+t)} ]\ dx
= n1 [log∣t∣−log ∣t+1∣]+C
= −n1[log∣xn∣−log∣xn+1∣]+C
= n1 log ∣xn+1xn∣+C