Solveeit Logo

Question

Mathematics Question on integral

Integrate the rational function: 1x(x41)\frac {1}{x(x^4-1)}

Answer

1x(x41)\frac {1}{x(x^4-1)}

Multiplying numerator and denominator by x3 , we obtain

1x(x41)\frac {1}{x(x^4-1)} = x3x4(x41)\frac {x^3}{x^4(x^4-1)}

∫$$\frac {1}{x(x^4-1)}dx = ∫$$\frac {x^3}{x^4(x^4-1)}dx

Let x4 = t ⇒ 4x3dx = dt

∫$$\frac {1}{x(x^4-1)}dx = 14dtt(t1)\frac 14∫\frac {dt}{t(t-1)}

Let 1t(t1)\frac {1}{t(t-1)} = At+B(t1)\frac At+\frac {B}{(t-1)}

1=A(t1)+Bt1 = A(t-1) + Bt ...(1)

Substituting t = 0 and 1 in (1), we obtain

A=1 and B=1A = -1\ and \ B = 1

1t(t1)\frac {1}{t(t-1)} = 1t+1t1\frac {-1}{t}+\frac {1}{t-1}

∫$$\frac {1}{x(x^4-1)}dx = 14\frac 14 ∫$$\frac {-1}{t}+\frac {1}{t-1}dt

= 14[logt+logt1]+C\frac 14[-log|t|+log|t-1|]+C

= 14log t1t+C\frac 14log\ |\frac {t-1}{t}|+C

= 14logx41x4+C\frac 14log|\frac {x^4-1}{x^4}|+C