Question
Mathematics Question on integral
Integrate the rational function: x(x4−1)1
Answer
x(x4−1)1
Multiplying numerator and denominator by x3 , we obtain
x(x4−1)1 = x4(x4−1)x3
∴ ∫$$\frac {1}{x(x^4-1)}dx = ∫$$\frac {x^3}{x^4(x^4-1)}dx
Let x4 = t ⇒ 4x3dx = dt
∴ ∫$$\frac {1}{x(x^4-1)}dx = 41∫t(t−1)dt
Let t(t−1)1 = tA+(t−1)B
1=A(t−1)+Bt ...(1)
Substituting t = 0 and 1 in (1), we obtain
A=−1 and B=1
⇒ t(t−1)1 = t−1+t−11
⇒ ∫$$\frac {1}{x(x^4-1)}dx = 41 ∫$$\frac {-1}{t}+\frac {1}{t-1}dt
= 41[−log∣t∣+log∣t−1∣]+C
= 41log ∣tt−1∣+C
= 41log∣x4x4−1∣+C