Question
Mathematics Question on integral
Integrate the rational function: x4−11
Answer
x4−11 = (x2−1)(x2+1)1= (x+1)(x−1)(1+x2)1
Let (x+1)(x−1)(1+x2)1 = (x+1)A+(x−1)B+(x2+1)Cx+D
1=A(x−1)(x2+1)+B(x+1)(x2+1)+(Cx+D)(x2−1)
1=A(x3+x−x2−1)+B(x3+x+x2+1)+Cx3+Dx2−Cx−D
1=(A+B+C)x3+(−A+B+D)x2+(A+B−C)x+(−A+B−D)
Equating the coefficient of x3,x2,x,and constant term, we obtain
A+B+C=0
−A+B+D=0
A+B−C=0
−A+B−D=1
On solving these equations, we obtain
A=−41, B=41, C=0,and D=−21
∴ \frac {1}{x^4-1}$$=-\frac 14(x+1)+\frac 14(x-1)-\frac 12(x^2+1)
⇒ ∫$$\frac {1}{x^4-1}\ dx = −41 log∣x−1∣+41log ∣x−1∣−21 tan−1x+C
=41 log∣x+1x−1∣−21tan−1x+C