Solveeit Logo

Question

Mathematics Question on integral

Integrate the rational function: 1x41\frac {1}{x^4-1}

Answer

1x41\frac {1}{x^4-1} = 1(x21)(x2+1)\frac {1}{(x^2-1)(x^2+1)}= 1(x+1)(x1)(1+x2)\frac {1}{(x+1)(x-1)(1+x^2)}

Let 1(x+1)(x1)(1+x2)\frac {1}{(x+1)(x-1)(1+x^2)} = A(x+1)+B(x1)+Cx+D(x2+1)\frac {A}{(x+1)}+\frac {B}{(x-1)}+\frac {Cx+D}{(x^2+1)}

1=A(x1)(x2+1)+B(x+1)(x2+1)+(Cx+D)(x21)1 = A(x-1)(x^2+1)+B(x+1)(x^2+1)+(Cx+D)(x^2-1)

1=A(x3+xx21)+B(x3+x+x2+1)+Cx3+Dx2CxD1 = A(x^3+x-x^2-1)+B(x^3+x+x^2+1)+Cx^3+Dx^2-Cx-D

1=(A+B+C)x3+(A+B+D)x2+(A+BC)x+(A+BD)1 = (A+B+C)x^3+(-A+B+D)x^2+(A+B-C)x+(-A+B-D)

Equating the coefficient of x3,x2,x,and constant term, we obtainEquating \ the\ coefficient\ of\ x^3 , x^2 , x, and \ constant \ term, \ we \ obtain

A+B+C=0A+B+C = 0
A+B+D=0-A+B+D = 0
A+BC=0A+B-C = 0
A+BD=1-A+B-D = 1
On solving these equations, we obtainOn\ solving\ these\ equations, \ we \ obtain
A=14, B=14, C=0,and D=12A=-\frac 14, \ B=\frac 14,\ C=0,and \ D=-\frac 12

\frac {1}{x^4-1}$$=-\frac 14(x+1)+\frac 14(x-1)-\frac 12(x^2+1)

∫$$\frac {1}{x^4-1}\ dx = 14 logx1+14log x112 tan1x+C-\frac 14\ log|x-1|+\frac 14log\ |x-1|-\frac 12\ tan^{-1}x+C

=14 logx1x+112tan1x+C=\frac 14\ log|\frac {x-1}{x+1}|-\frac 12tan^{-1} x+C