Question
Mathematics Question on integral
Integrate the rational function: x(1−2x)1−x2
Answer
It can be seen that the given integrand is not a proper fraction.
Therefore, on dividing (1 − x2) by x(1 − 2x), we obtain
x(1−2x)1−x2=21+21(x(1−2x)2−x))
Let (1−2x)2−x=xA+(1−2x)B
⇒ (2-x) = A(1-2x)+Bx ...(1)
Substituting x = 0 and 21 in equation (1), we obtain
A = 2 and B = 3
∴ x(1−2x)2−x=x2+1−2x3
Substituting in equation (1), we obtain
\frac{1-x^2}{x(1-2x)} = \frac{1}{2}+\frac{1}{2}\bigg\\{\frac{2}{x}+\frac{3}{1-2x)}\bigg\\}
\Rightarrow\int\frac{1-x^2}{x(1-2x)}dx = \int\bigg\\{\frac{1}{2}+\frac{1}{2}\bigg(\frac{2}{x}+\frac{3}{1-2x)}\bigg)\bigg\\}dx
=2x+log∣x∣+2(−2)3log∣1−2x∣+C
=2x+log∣x∣+43log∣1−2x∣+C