Solveeit Logo

Question

Mathematics Question on integral

Integrate the rational function: 1x29\frac{1}{x^2-9}

Answer

Let 1(x+3)(x3)=A(x+3)+B(x3)\frac{1}{(x+3)(x-3)} = \frac{A}{(x+3)}+\frac{B}{(x-3)}

1 = A (x-3)+B(x+3)
Equating the coefficients of x and constant term, we obtain
A + B = 0
−3A + 3B = 1
On solving, we obtain

A =- 16\frac{1}{6}and B = 16\frac{1}{6}

1(x+3)(x3)=16(x+3)+16(x3)\frac{1}{(x+3)(x-3)}=\frac{-1}{6(x+3)}+\frac{1}{6(x-3)}

1(xx29)dx=(16(x+3)+16(x3))dx\Rightarrow \int\frac{1}{(xx^2-9)}dx=\int\bigg(\frac{-1}{6(x+3)}+\frac{1}{6(x-3)}\bigg)dx

= 16logx+3+16logx3+C-\frac{1}{6}\log\mid x+3 \mid +\frac{1}{6}\log \mid x-3 \mid+C

16log(x3)(x+3)+C\frac{1}{6}\log \mid\frac{(x-3)}{(x+3)} \mid+C