Solveeit Logo

Question

Mathematics Question on integral

Integrate the rational function: 1(ex1)\frac {1}{(e^x-1) }

Answer

1(ex1)\frac {1}{(e^x-1) }

Let ex = t ⇒ ex dx = dt

∫$$\frac {1}{(e^x-1) } = ∫$$\frac {1}{t-1}.\frac {dt}{t}= ∫$$\frac {1}{t(t-1)} dt

Let 1t(t1)\frac {1}{t(t-1)} = At+Bt1\frac {A}{t}+\frac {B}{t-1}

1=A(t1)+Bt1 = A(t-1)+Bt ...(1)

Substituting t = 1 and t = 0 in equation (1), we obtain

A=1 and B=1A = −1 \ and \ B = 1

1t(t1)\frac {1}{t(t-1)} = 1t+1t1\frac {-1}{t}+\frac {1}{t-1}

∫$$\frac {1}{t(t-1)} dt = logt1t+Clog|\frac {t-1}{t}|+C

= log ex1ex+Clog\ |\frac {e^x-1}{e^x}|+C