Question
Question: Integrate the given trigonometric function \[\int{\dfrac{1}{\sin x-\sin 2x}dx}\]....
Integrate the given trigonometric function ∫sinx−sin2x1dx.
Solution
Hint: Use the formula sin2x=2sinx.cosx and simplify the integral. And now use the substitution method. Substitute cosx with the variable ‘t’. You will get a polynomial in ‘t’. Then use partial fractions method for integrating.
Complete step-by-step solution -
We have to find ∫sinx−sin2x1dx
We know, sin2x=2sinx.cosx.
Replacing sin2x with 2sinx.cosx, we will get,
∫sinx−sin2x1dx=∫sinx−2sinxcosx1
Taking sinx common in denominator, we will get,
∫sinx−sin2x1dx=∫sinx(1−2cosx)1dx
On multiplying and dividing by sinx in the integral, we will get,
∫sinx−sin2x1dx=∫sin2x(1−2cosx)sinxdx
Let us assume ∫sinx−sin2x1dx=I
⇒I=∫sin2x(1−2cosx)sinxdx..........(1)
Let us substitute a variable ‘t’ for cosx,
i.e. t=cosx
Differentiating both sides with respect to x, we will get,
⇒dxdt=dxdcosx
We know, dxdcosx=−sinx
⇒dxdt=−sinx
Multiplying both sides by dx, we will get,
⇒dt=−sinxdx..........(2)
From equation (1),
⇒I=∫sin2x(1−2cosx)sinxdx
We know,
sin2x+cos2x=1sin2x=1−cos2x
Putting sin2x=1−cos2x, we will get,
⇒I=∫(1−cos2x)(1−2cosx)sinxdx
From equation (2),
⇒dt=−sinxdx⇒sinxdx=−dt
Putting sinxdx=−dt and cosx=t, we will get,
I=∫(1−t2)(1−2t)−dt
Multiplying both numerator and denominator by -1 in integral, we will get,
I=∫(1−t2)(2t−1)dt
We know a2−b2=(a−b)(a+b)
Using this, (1−t2)=(1−t)(1+t),
I=∫(1−t)(1+t)(2t−1)dt
Now, let us use partial fraction for further solving,
Let (1−t)(1+t)(2t−1)1=1+tA+1−tB+2t−1C
Taking LCM and adding in RHS, we will get,
(1+t)(1−t)(2t−1)1=(1+t)(1−t)(2t−1)A(1−t)(2t−1)+B(1+t)(2t−1)+C(1+t)(1−t)
Dividing both sides of equation by (1−t)(1+t)(2t−1), we will get,
1=A(1−t)(2t−1)+B(1+t)(2t−1)+C(1+t)(1−t).......(3)
Putting t=1 in equation (3),