Solveeit Logo

Question

Question: Integrate the given trigonometric expression. \[\int{\dfrac{{{e}^{x}}.\cos 3x-{{4}^{x}}\tan 3x}...

Integrate the given trigonometric expression.

ex.cos3x4xtan3x4x.cos3x.dx\int{\dfrac{{{e}^{x}}.\cos 3x-{{4}^{x}}\tan 3x}{{{4}^{x}}.\cos 3x}}.dx

Explanation

Solution

Hint: Get two fractions in subtraction, with dividing the numerator terms individually. Use property of surd (ab)n=anbn.{{\left( \dfrac{a}{b} \right)}^{n}}=\dfrac{{{a}^{n}}}{{{b}^{n}}}. Integration ofax{{a}^{x}}, is given asaxdx=axlogea\int{{{a}^{x}}dx=}\dfrac{{{a}^{x}}}{{{\log }_{e}}a}. Differentiation of secx\sec x is given assecxtanx\sec x\tan x, use this concept while using the substitution approach with the integration of the second term formed after separating the given expression in two individual terms.

Complete step-by-step solution -
Given integral in the question is
\int{\dfrac{{{e}^{x}}.\cos 3x-{{4}^{x}}\tan 3x}{{{4}^{x}}.\cos 3x}}.dx$$$$\to (1)
Let us divide excos3x4xtan3x{{e}^{x}}\cos 3x-{{4}^{x}}\tan 3x by4xcos3x{{4}^{x}}\cos 3x, hence, we get

& =\int{\left( \dfrac{{{e}^{x}}\cos 3x}{{{4}^{x}}\cos 3x}-\dfrac{{{4}^{x}}\tan 3x}{{{4}^{x}}\cos 3x} \right)}dx \\\ & =\int{\left( \dfrac{{{e}^{x}}}{{{4}^{x}}}-\dfrac{\tan 3x}{\cos 3x} \right)dx} \\\ \end{aligned}$$ We know that property of surds, given as $$\dfrac{{{a}^{m}}}{{{b}^{m}}}={{\left( \dfrac{a}{b} \right)}^{m}}$$ So, we can get integral with the help of above relation as $$\begin{aligned} & =\int{\left( {{\left( \dfrac{e}{4} \right)}^{x}}-\dfrac{\tan 3x}{\cos 3x} \right)dx} \\\ & =\int{{{\left( \dfrac{e}{4} \right)}^{x}}dx-\int{\dfrac{\tan 3x}{\cos 3x}dx}}\to (2) \\\ \end{aligned}$$ Now, let us suppose the $$\int{{{\left( \dfrac{e}{4} \right)}^{x}}dx}$$as$${{\text{I}}_{1}}$$, and $$\int{\dfrac{\tan 3x}{\cos 3x}dx}$$as$${{\text{I}}_{\text{2}}}$$. So, let us calculate $${{\text{I}}_{1}}$$and $${{\text{I}}_{\text{2}}}$$one by one. So, we have $${{\text{I}}_{1}}=\int{{{\left( \dfrac{e}{4} \right)}^{x}}dx}$$$$\to (3)$$ $${{\text{I}}_{\text{2}}}=\int{\dfrac{\tan 3x}{\cos 3x}dx}$$$$\to (4)$$ So, let us calculate$${{\text{I}}_{1}}$$as $${{\text{I}}_{1}}=\int{{{\left( \dfrac{e}{4} \right)}^{x}}dx}$$ We know the integration of $${{a}^{x}}$$is given as $$\int{{{a}^{x}}}dx=\dfrac{{{a}^{x}}}{{{\log }_{e}}a}$$ Hence, value of $${{\text{I}}_{1}}$$is given as $${{\text{I}}_{1}}=\dfrac{{{\left( \dfrac{e}{4} \right)}^{x}}}{{{\log }_{e}}\left( \dfrac{e}{4} \right)}+c$$ We know that the property of logarithm function is given as $${{\log }_{c}}\left( \dfrac{a}{b} \right)={{\log }_{c}}a-{{\log }_{c}}b$$ So, we get $${{\text{I}}_{1}}$$as $${{\text{I}}_{1}}={{\left( \dfrac{e}{4} \right)}^{x}}\dfrac{1}{{{\log }_{e}}e-{{\log }_{e}}4}+c$$ We know $${{\log }_{a}}a=1$$. So, we get value of $${{\text{I}}_{1}}$$as $${{\text{I}}_{1}}=\dfrac{{{e}^{x}}}{{{4}^{x}}\left( 1-{{\log }_{e}}4 \right)}+c$$$$\to (5)$$ Now, we can evaluate value of $${{\text{I}}_{\text{2}}}$$as $${{\text{I}}_{\text{2}}}=\int{\dfrac{\tan 3x}{\cos 3x}}dx$$$$\to (6)$$ Now, we know the relation between $$\cos \theta $$and $$\sec \theta $$is given as $$\sec \theta =\dfrac{1}{\cos \theta }$$ Hence, integral $${{\text{I}}_{\text{2}}}$$can be written as $${{\text{I}}_{\text{2}}}=\int{\sec 3x\tan 3x\text{ }dx}$$$$\to (7)$$ Now, suppose $$\sec 3x=t$$. Differentiate the above relation with respect to$$'x'$$. We get $$\dfrac{d}{dx}\left( \sec 3x \right)=\dfrac{dt}{dx}$$ We know that the derivative of $$\sec \theta $$is$$\sec \theta \tan \theta $$. Hence, we get $$\begin{aligned} & \dfrac{d}{dx}\left( \sec 3x \right)=\dfrac{dt}{dx} \\\ & 3\sec 3x\tan 3x=\dfrac{dt}{dx} \\\ \end{aligned}$$ $$\sec 3x\tan 3x\text{ }dx=\dfrac{dt}{3}$$$$\to (8)$$ Now, replacing $$\sec 3x\tan 3x\text{ }dx$$by $$\dfrac{dt}{3}$$ in the expression$${{\text{I}}_{\text{2}}}$$. So, we get $${{\text{I}}_{\text{2}}}=\int{\dfrac{dt}{3}}=\dfrac{t}{3}+c$$ Now, put $$t=\sec 3x$$to the above equation. So, we get $${{\text{I}}_{\text{2}}}=\dfrac{\sec 3x}{3}+c$$$$\to (9)$$ Hence, we get the integral of the given expression in the problem from the equation (2), (7) and (9) as $$={{\left( \dfrac{e}{4} \right)}^{x}}\dfrac{1}{\left( 1-{{\log }_{e}}4 \right)}-\dfrac{\sec 3x}{3}+c$$ So, we get $$\int{\dfrac{{{e}^{x}}\cos 3x-{{4}^{x}}\tan 3x}{{{4}^{x}}\cos 3x}}dx={{\left( \dfrac{e}{4} \right)}^{x}}\dfrac{1}{\left( 1-{{\log }_{e}}4 \right)}-\dfrac{\sec 3x}{3}+c$$ Note: One may get confused with the given term integral, as terms of exponential and trigonometric both are involved. So, one may think of applying integration by parts, which is a complex approach. Just find two fractions by dividing the numerators (in difference) by denominator individually. Students make a lot of mistakes with the results of $$\int{{{a}^{x}}}dx$$ and $$\dfrac{d}{dx}{{a}^{x}}$$. So, both are given as $$\int{{{a}^{x}}}dx=\dfrac{{{a}^{x}}}{{{\log }_{e}}a}$$ and $$\dfrac{d}{dx}{{a}^{x}}={{a}^{x}}{{\log }_{e}}a$$. So, one may get confused with them.