Question
Question: Integrate the given trigonometric expression. \[\int{\dfrac{{{e}^{x}}.\cos 3x-{{4}^{x}}\tan 3x}...
Integrate the given trigonometric expression.
∫4x.cos3xex.cos3x−4xtan3x.dx
Explanation
Solution
Hint: Get two fractions in subtraction, with dividing the numerator terms individually. Use property of surd (ba)n=bnan. Integration ofax, is given as∫axdx=logeaax. Differentiation of secx is given assecxtanx, use this concept while using the substitution approach with the integration of the second term formed after separating the given expression in two individual terms.
Complete step-by-step solution -
Given integral in the question is
\int{\dfrac{{{e}^{x}}.\cos 3x-{{4}^{x}}\tan 3x}{{{4}^{x}}.\cos 3x}}.dx$$$$\to (1)
Let us divide excos3x−4xtan3x by4xcos3x, hence, we get