Solveeit Logo

Question

Question: Integrate the given function \(x{{\sin }^{-1}}x\)?...

Integrate the given function xsin1xx{{\sin }^{-1}}x?

Explanation

Solution

We have multiplication of two functions involved in xsin1xx{{\sin }^{-1}}x. To integrate xsin1xx{{\sin }^{-1}}x, we use integration by parts by taking sin1x{{\sin }^{-1}}x as the function outside of the integral. Once we have done the by parts, we make the changes in the denominator to get the value of all the integrals involved in this calculation. We make the necessary reductions to get the required result.

Complete step-by-step solution:
Given that we have function xsin1xx{{\sin }^{-1}}x and we need to integrate that given function.
So, we need to find the value of xsin1xdx\int{x{{\sin }^{-1}}xdx}.
To solve the problem, we need to use the result of integration by parts. We know that integration by parts is to be done when a combination of two or more functions are multiplied to each other inside the integral.
We know that integration of the function fg is defined as fgdx=fgdx((dfdx).gdx)dx\int{fgdx=f\int{gdx}-\int{\left( \left( \dfrac{df}{dx} \right).\int{gdx} \right)}dx}.
Let us take f(x)=sin1(x)f\left( x \right)={{\sin }^{-1}}\left( x \right) and g(x) = x.
We have got xsin1xdx=(sin1xxdx)((d(sin1x)dx).xdx)dx\int{x{{\sin }^{-1}}xdx}=\left( {{\sin }^{-1}}x\int{xdx} \right)-\int{\left( \left( \dfrac{d\left( {{\sin }^{-1}}x \right)}{dx} \right).\int{xdx} \right)}dx.
We know that xndx=xn+1n+1+C\int{{{x}^{n}}dx=\dfrac{{{x}^{n+1}}}{n+1}+C} and d(sin1x)dx=11x2\dfrac{d\left( {{\sin }^{-1}}x \right)}{dx}=\dfrac{1}{\sqrt{1-{{x}^{2}}}}.
We have got xsin1xdx=(sin1(x).x22)(11x2.x22)dx\int{x{{\sin }^{-1}}xdx}=\left( {{\sin }^{-1}}\left( x \right).\dfrac{{{x}^{2}}}{2} \right)-\int{\left( \dfrac{1}{\sqrt{1-{{x}^{2}}}}.\dfrac{{{x}^{2}}}{2} \right)}dx.
We have got xsin1xdx=(x2.sin1x2)12×(x21x2dx)\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx} \right).
We have got xsin1xdx=(x2.sin1x2)+12×(1x211x2dx)\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\dfrac{1-{{x}^{2}}-1}{\sqrt{1-{{x}^{2}}}}dx} \right).
We know that (a+b)dx=adx+bdx\int{\left( a+b \right)dx=\int{adx+\int{bdx}}}.
We have got xsin1xdx=(x2.sin1x2)+12×(1x21x2dx)12×(11x2dx)\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\dfrac{1-{{x}^{2}}}{\sqrt{1-{{x}^{2}}}}dx} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx} \right).
We have xsin1xdx=(x2.sin1x2)+12×(1x2dx)12×(11x2dx)\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \int{\sqrt{1-{{x}^{2}}}dx} \right)-\dfrac{1}{2}\times \left( \int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx} \right).
We know that 1x2dx=x×1x22+12sin1x+C\int{\sqrt{1-{{x}^{2}}}dx=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{2}+\dfrac{1}{2}{{\sin }^{-1}}x+C} and 11x2dx=sin1x+C\int{\dfrac{1}{\sqrt{1-{{x}^{2}}}}dx={{\sin }^{-1}}x}+C.
So, we have xsin1xdx=(x2.sin1x2)+12×(x×1x22+12sin1x)12×(sin1x)+C\int{x{{\sin }^{-1}}xdx}=\left( \dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2} \right)+\dfrac{1}{2}\times \left( \dfrac{x\times \sqrt{1-{{x}^{2}}}}{2}+\dfrac{1}{2}{{\sin }^{-1}}x \right)-\dfrac{1}{2}\times \left( {{\sin }^{-1}}x \right)+C.
We have xsin1xdx=x2.sin1x2+x×1x24+14sin1x12sin1x+C\int{x{{\sin }^{-1}}xdx}=\dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2}+\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{1}{4}{{\sin }^{-1}}x-\dfrac{1}{2}{{\sin }^{-1}}x+C.
We have xsin1xdx=x2.sin1x2+x×1x2414sin1x+C\int{x{{\sin }^{-1}}xdx}=\dfrac{{{x}^{2}}.{{\sin }^{-1}}x}{2}+\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}-\dfrac{1}{4}{{\sin }^{-1}}x+C.
We have xsin1xdx=x×1x24+sin1x(2x21)4+C\int{x{{\sin }^{-1}}xdx}=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C.
We got the value of xsin1xdx\int{x{{\sin }^{-1}}xdx} as x×1x24+sin1x(2x21)4+C\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C.
\therefore The integral xsin1xdx=x×1x24+sin1x(2x21)4+C\int{x{{\sin }^{-1}}xdx}=\dfrac{x\times \sqrt{1-{{x}^{2}}}}{4}+\dfrac{{{\sin }^{-1}}x\left( 2{{x}^{2}}-1 \right)}{4}+C.

Note: Whenever we see the integration problem involving inverse trigonometric functions, we use integrations by parts to get the integration. We always take inverse functions as ‘f’ for doing by parts as they cannot be integrated directly. While calculating the integral by parts, we need to make sure that no signs are gone wrong.