Solveeit Logo

Question

Question: Integrate the given function: \[\int{\dfrac{\cos 2x+2{{\sin }^{2}}x}{{{\sin }^{2}}x}}dx\]...

Integrate the given function: cos2x+2sin2xsin2xdx\int{\dfrac{\cos 2x+2{{\sin }^{2}}x}{{{\sin }^{2}}x}}dx

Explanation

Solution

Assume that I1=cos2x+2sin2xsin2xdx{{I}_{1}}=\int{\dfrac{\cos 2x+2{{\sin }^{2}}x}{{{\sin }^{2}}x}}dx . Use the identity, cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x and replace 2sin2x2{{\sin }^{2}}x in the numerator in terms of cos2x\cos 2x . Now, use the identity, sinx=1cosecx\sin x=\dfrac{1}{\cos ecx} and simplify it. At last, use the formula, cosec2xdx=cotx+c\int{\cos e{{c}^{2}}xdx}=-\cot x+c and solve it further to get the value of I1{{I}_{1}}.

Complete step-by-step solution:
According to the question, we are asked to find the integration of cos2x+2sin2xsin2xdx\int{\dfrac{\cos 2x+2{{\sin }^{2}}x}{{{\sin }^{2}}x}}dx .
For our convenience, first of all, let us assume that I1=cos2x+2sin2xsin2xdx{{I}_{1}}=\int{\dfrac{\cos 2x+2{{\sin }^{2}}x}{{{\sin }^{2}}x}}dx ……………………………….(1)
We can see that the given expression cannot be integrated directly. So, we have to modify it into a simpler expression that can be integrated directly using the basic formulas.
We know the identity, cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x ………………………………………..(2)
On simplifying equation (2) and taking cos2x\cos 2x to the RHS while 2sin2x2{{\sin }^{2}}x to the LHS, we get
cos2x=12sin2x\Rightarrow \cos 2x=1-2{{\sin }^{2}}x
2sin2x=1cos2x\Rightarrow 2{{\sin }^{2}}x=1-\cos 2x ……………………………………(3)
We have to simplify equation (1).
Now, using equation (3) and on substituting 2sin2x2{{\sin }^{2}}x by 1cos2x1-\cos 2x in numerator of equation (1), we get
I1=cos2x+1cos2xsin2xdx\Rightarrow {{I}_{1}}=\int{\dfrac{\cos 2x+1-\cos 2x}{{{\sin }^{2}}x}}dx
I1=1sin2xdx\Rightarrow {{I}_{1}}=\int{\dfrac{1}{{{\sin }^{2}}x}}dx ……………………………………(4)
We also know the identity that sine function is the reciprocal of cosec function, sinx=1cosecx\sin x=\dfrac{1}{\cos ecx} ………………………………………………(5)
Now, using equation (5) and on substituting sinx\sin x by cosecx\cos ecx in equation (4), we get
I1=1(1cosecx)2dx\Rightarrow {{I}_{1}}=\int{\dfrac{1}{{{\left( \dfrac{1}{\cos ecx} \right)}^{2}}}}dx
I1=cosec2xdx\Rightarrow {{I}_{1}}=\int{\cos e{{c}^{2}}xdx} …………………………………………(6)
We know the formula, cosec2xdx=cotx+c\int{\cos e{{c}^{2}}xdx}=-\cot x+c ………………………………………….(7)
Now, on comparing equation (6) and equation (7), we get
I1=cotx+c\Rightarrow {{I}_{1}}=-\cot x+c ………………………………………….(8)
Similarly, on comparing equation (1) and equation (8), we get
I1=cos2x+2sin2xsin2xdx=cotx+c{{I}_{1}}=\int{\dfrac{\cos 2x+2{{\sin }^{2}}x}{{{\sin }^{2}}x}}dx=-\cot x+c …………………………………..(9)
From equation (9), we have got the value of integration, cos2x+2sin2xsin2xdx=cotx+c\int{\dfrac{\cos 2x+2{{\sin }^{2}}x}{{{\sin }^{2}}x}}dx=-\cot x+c .
Therefore, cos2x+2sin2xsin2xdx=cotx+c\int{\dfrac{\cos 2x+2{{\sin }^{2}}x}{{{\sin }^{2}}x}}dx=-\cot x+c.

Note: In this question, one might convert the sin2x{{\sin }^{2}}x in the denominator in terms of cos2x\cos 2x by using the identity cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x . On doing this, one will get 21cos2xdx\int{\dfrac{2}{1-\cos 2x}}dx which is more complex to solve within a given time constraint. So, for simple integration, just convert the sin2x{{\sin }^{2}}x in the numerator in terms of cos2x\cos 2x by using the identity cos2x=12sin2x\cos 2x=1-2{{\sin }^{2}}x and leave the sin2x{{\sin }^{2}}x in the denominator as it is.