Question
Question: Integrate the given expression, \[\int{{{\tan }^{-1}}\left( \sqrt{\dfrac{\left( 1-\sin x \right)}{\l...
Integrate the given expression, ∫tan−1((1+sinx)(1−sinx))dx .
Solution
Hint:We know the formula, 1−sin2x=cosx−sinx . We also know the formula, 1+sin2x=sinx+cosx . We don’t have 2x terms in the expression. So, we have to replace x by 2x in both formulas. We get 1−sinx=cos2x−sin2x and 1+sinx=sin2x+cos2x . Now, substituting this in the given expression we get, ∫tan−1((1+sinx)(1−sinx))dx=∫tan−1cos2x+sin2xcos2x−sin2x . Now divide by cos2x in numerator and denominator of the expression and then use the formula, tan(A−B)=1+tanA.tanBtanA−tanB , where A = 4π and B = 2x . Use the property, tan−1(tanx)=x and solve further.
Complete step-by-step answer:
According to the question, we have to integrate the expression ∫tan−1((1+sinx)(1−sinx))dx . We have to convert this expression into simpler form.
We know the formula,
1−sin2x=cosx−sinx …………………….(1)
1+sin2x=sinx+cosx ……………………..(2)
Replacing x by 2x in equation (1) and equation (2), we get
1−sin2.2x=cos2x−sin2x
⇒1−sinx=cos2x−sin2x ……………………….(3)
1+sin2.2x=sin2x+cos2x
⇒1+sinx=sin2x+cos2x ………………….(4)
Using equation (3) and equation (4), we can transform the given expression.
∫tan−1((1+sinx)(1−sinx))dx
⇒∫tan−1(cos2x+sin2x)(cos2x−sin2x)dx ………………….(5)
Dividing by cos2x in numerator and denominator of the equation (5).
⇒∫tan−1cos2xcos2x+cos2xsin2xcos2xcos2x−cos2xsin2xdx ……………………..(6)
We know that, cos2xsin2x=tan2x …………………..(7)
From equation (6) and equation (7), we have
⇒∫tan−1(1+tan2x)(1−tan2x)dx ………………………….(8)
We also know the formula, tan(A−B)=1+tanA.tanBtanA−tanB ………….(9)
Now, replacing A = 4π and B = 2x in the equation (9), we have
tan(A−B)=1+tanA.tanBtanA−tanB
⇒tan(4π−2x)=1+tan4π.tan2xtan4π−tan2x …………………………(10)
We know that, tan4π=1 ………………(11)
From equation (10) and equation (11), we have
⇒tan(4π−2x)=1+tan4π.tan2xtan4π−tan2x
⇒tan(4π−2x)=1+1.tan2x1−tan2x …………………………(12)
From equation (8) and equation (12), we get
⇒∫tan−1(1+tan2x)(1−tan2x)dx
⇒∫tan−1(tan(4π−2x))dx ………………………..(13)
We know the property, tan−1(tanx)=x . Using this property in equation (13), we get