Solveeit Logo

Question

Question: Integrate the given expression, \[\int{{{\tan }^{-1}}\left( \sqrt{\dfrac{\left( 1-\sin x \right)}{\l...

Integrate the given expression, tan1((1sinx)(1+sinx))dx\int{{{\tan }^{-1}}\left( \sqrt{\dfrac{\left( 1-\sin x \right)}{\left( 1+\sin x \right)}} \right)}dx .

Explanation

Solution

Hint:We know the formula, 1sin2x=cosxsinx\sqrt{1-\sin 2x}=\cos x-\sin x . We also know the formula, 1+sin2x=sinx+cosx\sqrt{1+\sin 2x}=\sin x+\cos x . We don’t have 2x terms in the expression. So, we have to replace x by x2\dfrac{x}{2} in both formulas. We get 1sinx=cosx2sinx2\sqrt{1-\sin x}=\cos \dfrac{x}{2}-\sin \dfrac{x}{2} and 1+sinx=sinx2+cosx2\sqrt{1+\sin x}=\sin \dfrac{x}{2}+\cos \dfrac{x}{2} . Now, substituting this in the given expression we get, tan1((1sinx)(1+sinx))dx=tan1(cosx2sinx2cosx2+sinx2)\int{{{\tan }^{-1}}\left( \sqrt{\dfrac{\left( 1-\sin x \right)}{\left( 1+\sin x \right)}} \right)}dx=\int{{{\tan }^{-1}}\left( \dfrac{\cos \dfrac{x}{2}-\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}+\sin \dfrac{x}{2}} \right)} . Now divide by cosx2\cos \dfrac{x}{2} in numerator and denominator of the expression and then use the formula, tan(AB)=tanAtanB1+tanA.tanB\tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B} , where A = π4\dfrac{\pi }{4} and B = x2\dfrac{x}{2} . Use the property, tan1(tanx)=x{{\tan }^{-1}}(tanx)=x and solve further.

Complete step-by-step answer:
According to the question, we have to integrate the expression tan1((1sinx)(1+sinx))dx\int{{{\tan }^{-1}}\left( \sqrt{\dfrac{\left( 1-\sin x \right)}{\left( 1+\sin x \right)}} \right)}dx . We have to convert this expression into simpler form.
We know the formula,
1sin2x=cosxsinx\sqrt{1-\sin 2x}=\cos x-\sin x …………………….(1)
1+sin2x=sinx+cosx\sqrt{1+\sin 2x}=\sin x+\cos x ……………………..(2)
Replacing x by x2\dfrac{x}{2} in equation (1) and equation (2), we get
1sin2.x2=cosx2sinx2\sqrt{1-\sin 2.\dfrac{x}{2}}=\cos \dfrac{x}{2}-\sin \dfrac{x}{2}
1sinx=cosx2sinx2\Rightarrow \sqrt{1-\sin x}=\cos \dfrac{x}{2}-\sin \dfrac{x}{2} ……………………….(3)
1+sin2.x2=sinx2+cosx2\sqrt{1+\sin 2.\dfrac{x}{2}}=\sin \dfrac{x}{2}+\cos \dfrac{x}{2}

1+sinx=sinx2+cosx2\Rightarrow \sqrt{1+\sin x}=\sin \dfrac{x}{2}+\cos \dfrac{x}{2} ………………….(4)
Using equation (3) and equation (4), we can transform the given expression.
tan1((1sinx)(1+sinx))dx\int{{{\tan }^{-1}}\left( \sqrt{\dfrac{\left( 1-\sin x \right)}{\left( 1+\sin x \right)}} \right)}dx
tan1((cosx2sinx2)(cosx2+sinx2))dx\Rightarrow \int{{{\tan }^{-1}}\left( \dfrac{\left( \cos \dfrac{x}{2}-\sin \dfrac{x}{2} \right)}{\left( \cos \dfrac{x}{2}+\sin \dfrac{x}{2} \right)} \right)}dx ………………….(5)
Dividing by cosx2\cos \dfrac{x}{2} in numerator and denominator of the equation (5).
tan1((cosx2cosx2sinx2cosx2)(cosx2cosx2+sinx2cosx2))dx\Rightarrow \int{{{\tan }^{-1}}\left( \dfrac{\left( \dfrac{\cos \dfrac{x}{2}}{\cos \dfrac{x}{2}}-\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)}{\left( \dfrac{\cos \dfrac{x}{2}}{\cos \dfrac{x}{2}}+\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}} \right)} \right)}dx ……………………..(6)
We know that, sinx2cosx2=tanx2\dfrac{\sin \dfrac{x}{2}}{\cos \dfrac{x}{2}}=\tan \dfrac{x}{2} …………………..(7)
From equation (6) and equation (7), we have
tan1((1tanx2)(1+tanx2))dx\Rightarrow \int{{{\tan }^{-1}}\left( \dfrac{\left( 1-\tan \dfrac{x}{2} \right)}{\left( 1+\tan \dfrac{x}{2} \right)} \right)}dx ………………………….(8)
We also know the formula, tan(AB)=tanAtanB1+tanA.tanB\tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B} ………….(9)
Now, replacing A = π4\dfrac{\pi }{4} and B = x2\dfrac{x}{2} in the equation (9), we have
tan(AB)=tanAtanB1+tanA.tanB\tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}
tan(π4x2)=tanπ4tanx21+tanπ4.tanx2\Rightarrow \tan (\dfrac{\pi }{4}-\dfrac{x}{2})=\dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}} …………………………(10)
We know that, tanπ4=1\tan \dfrac{\pi }{4}=1 ………………(11)
From equation (10) and equation (11), we have
tan(π4x2)=tanπ4tanx21+tanπ4.tanx2\Rightarrow \tan (\dfrac{\pi }{4}-\dfrac{x}{2})=\dfrac{\tan \dfrac{\pi }{4}-\tan \dfrac{x}{2}}{1+\tan \dfrac{\pi }{4}.\tan \dfrac{x}{2}}
tan(π4x2)=1tanx21+1.tanx2\Rightarrow \tan (\dfrac{\pi }{4}-\dfrac{x}{2})=\dfrac{1-\tan \dfrac{x}{2}}{1+1.\tan \dfrac{x}{2}} …………………………(12)
From equation (8) and equation (12), we get
tan1((1tanx2)(1+tanx2))dx\Rightarrow \int{{{\tan }^{-1}}\left( \dfrac{\left( 1-\tan \dfrac{x}{2} \right)}{\left( 1+\tan \dfrac{x}{2} \right)} \right)}dx
tan1(tan(π4x2))dx\Rightarrow \int{{{\tan }^{-1}}(\tan (\dfrac{\pi }{4}-\dfrac{x}{2}))dx} ………………………..(13)
We know the property, tan1(tanx)=x{{\tan }^{-1}}(tanx)=x . Using this property in equation (13), we get

& \int{\left( \dfrac{\pi }{4}-\dfrac{x}{2} \right)dx} \\\ & =\dfrac{\pi }{4}x-\dfrac{1}{2}.\dfrac{{{x}^{2}}}{2} \\\ & =\dfrac{\pi x}{4}-\dfrac{{{x}^{2}}}{4}+C \\\ \end{aligned}$$ Hence, the integration of the expression $$\int{{{\tan }^{-1}}\left( \sqrt{\dfrac{\left( 1-\sin x \right)}{\left( 1+\sin x \right)}} \right)}dx$$ is $$\dfrac{\pi x}{4}-\dfrac{{{x}^{2}}}{4}+C$$ . Note: In equation (5), one may think to divide by $$sin\dfrac{x}{2}$$ , then we will have $$\cot \dfrac{x}{2}$$ in numerator and denominator of the expression. If we don’t convert $$\cot \dfrac{x}{2}$$ into $$tan\dfrac{x}{2}$$ . Then, we will not be able to use the formula, $$\tan (A-B)=\dfrac{\tan A-\tan B}{1+\tan A.\tan B}$$ and the property $${{\tan }^{-1}}(tanx)=x$$ . If this formula and property is not applied then our expression will become difficult to solve.