Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: xtan1xxtan^{-1}x

Answer

Let II =∫$$xtan^{-1}x\ dx

Taking as first function and x as second function and integrating by parts, we obtain

II = tan-1x∫x dx-∫{(ddx\frac {d}{dx}tan-1x)∫x dx}dx

II= tan-1x (x22\frac {x^2}{2})-11+x2.x22dx∫\frac {1}{1+x^2}.\frac {x^2}{2} dx

II= x2tan1x2\frac {x^2tan^{-1}x}{2} - \frac 12$$∫\frac {x^2}{1+x^2} dx

II= x2tan1x2\frac {x^2tan^{-1}x}{2} - \frac 12$$∫(\frac {x^2+1}{1+x^2}-\frac {1}{1+x^2})dx

II= x2tan1x2\frac {x^2tan^{-1}x}{2} - \frac 12$$∫(1-\frac {1}{1+x^2})dx

II= x2tan1x2\frac {x^2tan^{-1}x}{2} - \frac 12$$(x-tan^{-1}x)+C

II= x22tan1xx2+12tan1x+C\frac {x^2}{2}tan^{-1}x - \frac x2+\frac 12tan^{-1}x+C