Question
Mathematics Question on integral
Integrate the function: xtan−1x
Answer
Let I =∫$$xtan^{-1}x\ dx
Taking as first function and x as second function and integrating by parts, we obtain
I = tan-1x∫x dx-∫{(dxdtan-1x)∫x dx}dx
I= tan-1x (2x2)-∫1+x21.2x2dx
I= 2x2tan−1x - \frac 12$$∫\frac {x^2}{1+x^2} dx
I= 2x2tan−1x - \frac 12$$∫(\frac {x^2+1}{1+x^2}-\frac {1}{1+x^2})dx
I= 2x2tan−1x - \frac 12$$∫(1-\frac {1}{1+x^2})dx
I= 2x2tan−1x - \frac 12$$(x-tan^{-1}x)+C
I= 2x2tan−1x−2x+21tan−1x+C