Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: xsin 3xxsin\ 3x

Answer

Let I=xsin 3xdxLet\ I=∫xsin\ 3xdx

Taking x as first function and sin 3xsin\ 3x as second function and integrating by parts, we obtain

I=xsin 3xdx(ddxx)sin 3xdxI= x∫sin\ 3x dx-∫{(\frac {d}{dx}x)∫sin\ 3x dx}

I=x(cos 3x3)1.(cos 3x3)dxI = x(\frac {-cos\ 3x}{3})-∫1.(\frac {-cos\ 3x}{3})dx

I=xcos 3x3+13cos 3xdxI = \frac {-xcos\ 3x}{3}+\frac 13∫cos\ 3x dx

I=xcos 3x3+19sin 3x+CI = \frac {-xcos \ 3x}{3}+\frac 19sin\ 3x+C