Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: xsin1xxsin^{-1}x

Answer

LetLet II=∫$$xsin^{-1}x\ dx

Taking as first function and x as second function and integrating by parts, we obtain

I= sin1x[xdx(ddxsin1x)xdx]dxsin^{-1}x∫[x dx-∫{(\frac {d}{dx}sin^{-1}x)}∫x dx]dx

I=sin1x(x22)11x2.x22dxI= sin^{-1}x (\frac {x^2}{2})-∫\frac {1}{\sqrt {1-x^2}}.\frac {x^2}{2} dx

I=x2sin1x2+12x21x2dxI= \frac {x^2sin^{-1}x}{2}+\frac 12∫\frac {-x^2}{\sqrt {1-x^2}} dx

I= x2sin1x2\frac {x^2sin^{-1}x}{2} + 12[1x21x211x2]dx\frac 12∫[{\frac {1-x^2}{\sqrt {1-x^2}}-\frac {1}{√1-x^2}}]dx

I= x2sin1x2\frac {x^2sin^{-1}x}{2} + 12[1x211x2]dx\frac 12∫[{\sqrt {1-x^2}-\frac {1}{\sqrt {1-x^2}}}]dx

I= x2sin1x2\frac {x^2sin^{-1}x}{2} + 12x21x2 dx11x2 dx\frac 12∫\frac x2{\sqrt {1-x^2\ }dx-∫\frac {1}{\sqrt {1-x^2}}}\ dx

I= x2sin1x2\frac {x^2sin^{-1}x}{2} + 12[x21x2+12sin1xsin1x]+C\frac 12[{\frac x2\sqrt {1-x^2}+\frac 12sin^{-1}x-sin^{-1}x}]+C

I= x2sin1x2\frac {x^2sin^{-1}x}{2} + x41x2+14sin1x12sin1x+C{\frac x4\sqrt {1-x^2}+\frac 14sin^{-1}x-\frac 12sin^{-1}x}+C

I=14(2x21)sin1x+x41x2+CI= \frac 14(2x^2-1)sin^{-1}x+\frac x4\sqrt {1-x^2}+C