Question
Mathematics Question on integral
Integrate the function: xsin−1x
Answer
Let I=∫$$xsin^{-1}x\ dx
Taking as first function and x as second function and integrating by parts, we obtain
I= sin−1x∫[xdx−∫(dxdsin−1x)∫xdx]dx
I=sin−1x(2x2)−∫1−x21.2x2dx
I=2x2sin−1x+21∫1−x2−x2dx
I= 2x2sin−1x + 21∫[1−x21−x2−√1−x21]dx
I= 2x2sin−1x + 21∫[1−x2−1−x21]dx
I= 2x2sin−1x + 21∫2x1−x2 dx−∫1−x21 dx
I= 2x2sin−1x + 21[2x1−x2+21sin−1x−sin−1x]+C
I= 2x2sin−1x + 4x1−x2+41sin−1x−21sin−1x+C
I=41(2x2−1)sin−1x+4x1−x2+C