Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: xsec2xxsec^2x

Answer

The correct answer is: =xtanx+logcosx+C=x\,tanx+log|cosx|+C
Let I=xsec2xdxI=∫xsec^2x dx
Taking xx as first function and sec2xsec^2 x as second function and integrating by parts,we
obtain
I=xsec2xdx[ddxxsec2xdx]dxI=x∫sec^2x dx-∫[{{\frac{d}{dx} x}∫sec^2x\, dx}]dx
=xtanx1.tanx.dx=x\,tanx-∫1\,.tanx. dx
=xtanx+logcosx+C=x\,tanx+log|cosx|+C