Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: xcos1xxcos^{-1} x

Answer

The correct answer is: =(2x21)4cos1xx41x2+C=\frac{(2x^2-1)}{4}cos^{-1}x-\frac{x}{4}\sqrt{1-x^2}+C
Let I=xcos1x.dxI=∫xcos^{-1} x. dx Taking cos1xcos^{−1} x as first function and xx as second function and integrating by parts,we
obtain
I=cos1xx.dx[(ddxcos1x)xdx]dxI=cos^{-1}x∫x.dx-∫[{(\frac{d}{dx}cos^{-1}x)∫xdx}]dx
=cos1xx2211x2.x22dx=cos^{-1}x\, \frac{x^2}{2}-∫\frac{-1}{\sqrt{1-x^2}}.\frac{x^2}{2} dx
=x2cos12121x211x2dx=\frac{x^2cos^{-1}}{2}-\frac{1}{2}∫\frac{1-x^2-1}{\sqrt{1-x^2}} dx
=x2cos12121x2+(11x2)dx=\frac{x^2cos^{-1}}{2}-\frac{1}{2}\int{\sqrt{1-x^2}+(\frac{-1}{\sqrt{1-x^2}})}dx
=x2cos12121x2+12(11x2)dx=\frac{x^2cos^{-1}}{2}-\frac{1}{2}\int{\sqrt{1-x^2}+\frac{1}{2}\int(\frac{-1}{\sqrt{1-x^2}})}dx
=x2cos1212I112cos1x...(1)=\frac{x^2cos^{-1}}{2}-\frac{1}{2}I_1-\frac{1}{2}cos^{-1}x...(1)
Where,I1=1x2dxI_1=∫\sqrt{1-x^2} dx
I1=x1x2ddx1x2x.dx⇒I_1=x\sqrt{1-x^2}-∫\frac{d}{dx}\sqrt{1-x^2}∫x.dx
I1=x1x22x21x2.xdx⇒I_1=x\sqrt{1-x^2}-∫\frac{-2x}{2\sqrt{1-x^2}}.x dx
I1=x1x2x1x2.xdx⇒I_1=x\sqrt{1-x^2}-∫\frac{-x}{\sqrt{1-x^2}}.x dx
I1=x1x21x211x2.xdx⇒I_1=x\sqrt{1-x^2}-∫\frac{1-x^2-1}{\sqrt{1-x^2}}.x dx
I1=x1x21x2dx+dx1x2⇒I_1=x\sqrt{1-x^2}-{∫\sqrt{1-x^2} dx+∫\frac{-dx}{\sqrt{1-x^2}}}
I1=x1x2[I1+cos1x]⇒I_1=x\sqrt{1-x^2}-[{I_1+cos^{-1}x}]
2I1=x1x2cos1x⇒2I_1=x\sqrt{1-x^2}-cos^{-1}x
I1=x21x212cos1x∴I_1=\frac{x}{2}\sqrt{1-x^2}-\frac{1}{2}cos^{-1}x
Substituting in equation(1),we obtain
I=xcos1x212(x21x212cos1x)12cos1xI=\frac{xcos^{-1}x}{2}-\frac{1}{2}(\frac{x}{2}\sqrt{1-x^2}-\frac{1}{2}cos^{-1}x)-\frac{1}{2}cos^{-1}x
=(2x21)4cos1xx41x2+C=\frac{(2x^2-1)}{4}cos^{-1}x-\frac{x}{4}\sqrt{1-x^2}+C