Question
Mathematics Question on integral
Integrate the function: xcos−1x
Answer
The correct answer is: =4(2x2−1)cos−1x−4x1−x2+C
Let I=∫xcos−1x.dx Taking cos−1x as first function and x as second function and integrating by parts,we
obtain
I=cos−1x∫x.dx−∫[(dxdcos−1x)∫xdx]dx
=cos−1x2x2−∫1−x2−1.2x2dx
=2x2cos−1−21∫1−x21−x2−1dx
=2x2cos−1−21∫1−x2+(1−x2−1)dx
=2x2cos−1−21∫1−x2+21∫(1−x2−1)dx
=2x2cos−1−21I1−21cos−1x...(1)
Where,I1=∫1−x2dx
⇒I1=x1−x2−∫dxd1−x2∫x.dx
⇒I1=x1−x2−∫21−x2−2x.xdx
⇒I1=x1−x2−∫1−x2−x.xdx
⇒I1=x1−x2−∫1−x21−x2−1.xdx
⇒I1=x1−x2−∫1−x2dx+∫1−x2−dx
⇒I1=x1−x2−[I1+cos−1x]
⇒2I1=x1−x2−cos−1x
∴I1=2x1−x2−21cos−1x
Substituting in equation(1),we obtain
I=2xcos−1x−21(2x1−x2−21cos−1x)−21cos−1x
=4(2x2−1)cos−1x−4x1−x2+C