Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: xx+2x \sqrt{x+2}

Answer

Let (x + 2) = t

∴ dx = dt

xx+2dx=(t2)tdt\Rightarrow \int x \sqrt{x+2}dx = \int (t-2) \sqrt{t}dt

= (t322t12)dt\int \bigg(t^{\frac{3}{2}}-2t^{\frac{1}{2}}\bigg)dt

= t32dt2t12dt\int t^{\frac{3}{2}}dt-2\int t^{\frac{1}{2}}dt

=t52522(t3232)+C\frac{t^\frac{5}{2}}{\frac{5}{2}}-2\bigg(\frac{t^{\frac{3}{2}}}{\frac{3}{2}}\bigg)+C

=25t5243t32+C\frac{2}{5}t^{\frac{5}{2}}-\frac{4}{3}t^{\frac{3}{2}}+C

= 25(x+2)5243(x+2)32+C\frac{2}{5}(x+2)^{\frac{5}{2}}-\frac{4}{3}(x+2)^{\frac{3}{2}}+C