Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: x(logx)2x(logx)^2

Answer

The correct answer is: x22(logx)2x22logx+x24+C\frac{x^2}{2}(logx)^2-\frac{x^2}{2}logx+\frac{x^2}{4}+C
Let I=x(logx)2dxI=∫x(logx)^2 dx
Taking(logx)2(logx)^2 as first function and 1 as second function and integrating by parts,we
obtain
I=(logx)2x.dx[ddxlogx)2xdx]dxI=(logx)^2∫x.dx-∫[{\frac{d}{dx}logx)^2}∫x dx]dx
=x22(logx)2[2logx.1x.x22.dx]=\frac{x^2}{2}(logx)^2-[∫2logx.\frac{1}{x}.\frac{x^2}{2}.dx]
=x22(logx)2xlogx.dx=\frac{x^2}{2}(logx)^2-∫xlogx. dx
Again integrating by parts,we obtain
I=x22(logx)2[logxxdx[(ddxlogx)xdx]dx]I=\frac{x^2}{2}(logx)^2-[logx∫x dx-∫[{(\frac{d}{dx}logx)∫x dx}]dx]
=x22(logx)2[x22logx1x.x22dx]=\frac{x^2}{2}(logx)^2-[\frac{x^2}{2}-logx-∫\frac{1}{x}.\frac{x^2}{2}dx]
=x22(logx)2x22logx+12xdx=\frac{x^2}{2}(logx)^2-\frac{x^2}{2}logx+\frac{1}{2}∫x dx
=x22(logx)2x22logx+x24+C=\frac{x^2}{2}(logx)^2-\frac{x^2}{2}logx+\frac{x^2}{4}+C