Solveeit Logo

Question

Question: Integrate the function \(x{{\cos }^{-1}}x\)....

Integrate the function xcos1xx{{\cos }^{-1}}x.

Explanation

Solution

Hint: If f(x)f\left( x \right) and g(x)g\left( x \right) be two functions then we can write f(x)g(x)dx=f(x)g(x)dx(f(x)g(x)dx)dx\int{f\left( x \right)g\left( x \right)dx=f\left( x \right)\int{g\left( x \right)dx-\int{\left( f'\left( x \right)\int{g\left( x \right)dx} \right)dx}}}. This method is called integration by parts. As in question there is an inverse trigonometric function so first convert into a trigonometric function by assuming cos1x=θ{{\cos }^{-1}}x=\theta . Then integrate by using integration by parts.

Complete step-by-step answer:
We have to integrate the function xcos1xx{{\cos }^{-1}}x.
That means we have to find the value of xcos1xdx\int{x{{\cos }^{-1}}xdx}.
cos1x{{\cos }^{-1}}x is inverse trigonometric function so to convert to trigonometric function putting cos1x=θ{{\cos }^{-1}}x=\theta .
So we get x=cosθx=\cos \theta .
We know that derivative of cosθ\cos \theta is sinθ-\sin \theta .
So differentiating both side with respect to xx we get dx=sinθdθdx=-\sin \theta d\theta .
Hence the integration become xcos1xdx=cosθ(cos1(cosθ))(sinθ)dθ\int{x{{\cos }^{-1}}xdx}=\int{\cos \theta }\left( {{\cos }^{-1}}\left( \cos \theta \right) \right)\left( -\sin \theta \right)d\theta /
We know that cos1(cosθ)=θ{{\cos }^{-1}}\left( \cos \theta \right)=\theta .
Hence xcos1xdx=cosθ(θ)(sinθ)dθ\int{x{{\cos }^{-1}}xdx}=\int{\cos \theta }\left( \theta \right)\left( -\sin \theta \right)d\theta .
Rearranging it we get xcos1xdx=θ(sinθcosθ)dθ\int{x{{\cos }^{-1}}xdx}=-\int{\theta \left( sin\theta \cos \theta \right)}d\theta .
Multiply and divide by 22 we get xcos1xdx=12θ(2sinθcosθ)dθ\int{x{{\cos }^{-1}}xdx}=-\dfrac{1}{2}\int{\theta \left( 2sin\theta \cos \theta \right)}d\theta .
Trigonometric identity is 2sinθcosθ=sin2θ2sin\theta \cos \theta =\sin 2\theta .
Using the identity we get xcos1xdx=12θsin2θdθ\int{x{{\cos }^{-1}}xdx}=-\dfrac{1}{2}\int{\theta \sin 2\theta }d\theta .
Integrating by parts we get f(x)g(x)dx=f(x)g(x)dx(f(x)g(x)dx)dx\int{f\left( x \right)g\left( x \right)dx=f\left( x \right)\int{g\left( x \right)dx-\int{\left( f'\left( x \right)\int{g\left( x \right)dx} \right)dx}}}.
Putting f(x)=θf\left( x \right)=\theta and g(x)=sin2θg\left( x \right)=\sin 2\theta we get xcos1xdx=12[θsin2θdθ((θ)sin2θdθ)dθ]\int{x{{\cos }^{-1}}xdx}=-\dfrac{1}{2}\left[ \theta \int{\sin 2\theta d\theta -\int{\left( \left( \theta \right)'\int{\sin 2\theta d\theta } \right)d\theta }} \right].
Derivative of θ\theta is 11. Also we know that sin(ax)dx=1acos(ax)\int{\sin \left( ax \right)dx=}-\dfrac{1}{a}\cos \left( ax \right) where aa is non-zero constant.
Using this formula we get xcos1xdx=12[θ.(12cos2θ)1.(12cos2θ)dθ]\int{x{{\cos }^{-1}}xdx}=-\dfrac{1}{2}\left[ \theta .\left( -\dfrac{1}{2}\cos 2\theta \right)-\int{1.}\left( -\dfrac{1}{2}\cos 2\theta \right)d\theta \right].
Taking 12-\dfrac{1}{2} common we get xcos1xdx=(12)(12)[θ.(cos2θ)cos2θdθ]\int{x{{\cos }^{-1}}xdx}=\left( -\dfrac{1}{2} \right)\left( -\dfrac{1}{2} \right)\left[ \theta .\left( \cos 2\theta \right)-\int{\cos 2\theta d\theta } \right].
Further simplifying we get xcos1xdx=14[θ.(cos2θ)cos2θdθ]\int{x{{\cos }^{-1}}xdx}=\dfrac{1}{4}\left[ \theta .\left( \cos 2\theta \right)-\int{\cos 2\theta d\theta } \right].
Since we have cos(ax)dx=1asin(ax)\int{\cos \left( ax \right)dx=}\dfrac{1}{a}\sin \left( ax \right) where aa is non-zero constant. Also in integration we add a constant term.
Using this formula we get xcos1xdx=14[θ.(cos2θ)12sin2θ]+c\int{x{{\cos }^{-1}}xdx}=\dfrac{1}{4}\left[ \theta .\left( \cos 2\theta \right)-\dfrac{1}{2}\sin 2\theta \right]+c where cc is the arbitrary constant.
Also two trigonometric identities are cos2θ=2cos2θ1\cos 2\theta =2{{\cos }^{2}}\theta -1 and sin2θ=2sinθcosθ\sin 2\theta =2\sin \theta \cos \theta .
Using these identities we get xcos1xdx=14[θ.(2cos2θ1)12.2sinθcosθ]+c\int{x{{\cos }^{-1}}xdx}=\dfrac{1}{4}\left[ \theta .\left( 2{{\cos }^{2}}\theta -1 \right)-\dfrac{1}{2}.2\sin \theta \cos \theta \right]+c.
Simplifying the terms and also using the identity sinθ=1cos2θ\sin \theta =\sqrt{1-{{\cos }^{2}}\theta } we get xcos1xdx=14[θ.(2cos2θ1)1cos2θcosθ]+c\int{x{{\cos }^{-1}}xdx}=\dfrac{1}{4}\left[ \theta .\left( 2{{\cos }^{2}}\theta -1 \right)-\sqrt{1-{{\cos }^{2}}\theta }\cos \theta \right]+c.
Now putting cos1x=θ{{\cos }^{-1}}x=\theta and x=cosθx=\cos \theta we get xcos1xdx=14[cos1x(2x21)1x2.x]+c\int{x{{\cos }^{-1}}xdx}=\dfrac{1}{4}\left[ {{\cos }^{-1}}x\left( 2{{x}^{2}}-1 \right)-\sqrt{1-{{x}^{2}}}.x \right]+c.
Rearranging the terms we get xcos1xdx=14[(2x21)cos1xx1x2]+c\int{x{{\cos }^{-1}}xdx}=\dfrac{1}{4}\left[ \left( 2{{x}^{2}}-1 \right){{\cos }^{-1}}x-x\sqrt{1-{{x}^{2}}} \right]+c.
Therefore the integration of the function xcos1xx{{\cos }^{-1}}x is 14[(2x21)cos1xx1x2]+c\dfrac{1}{4}\left[ \left( 2{{x}^{2}}-1 \right){{\cos }^{-1}}x-x\sqrt{1-{{x}^{2}}} \right]+c.
This is the required solution.

Note: In this problem while converting inverse trigonometric function to trigonometric function student must be careful and use appropriate substitution. While integrating so many trigonometric identities are used, so students. So students must be aware of those. Students must remember to add one arbitrary constant at the end of the integration as we are dealing with indefinite integrals.