Solveeit Logo

Question

Mathematics Question on integral

Integrate the function: (x31)13x5(x^3-1)^{\frac{1}{3}}x^5

Answer

Let x3 - 1 = t

∴ 3x2dx = dt

(x31)13x5dx=x3.x2dx\Rightarrow \int(x^3-1)^{\frac{1}{3}}x^5dx= \int x^3.x^2dx

= t13(t+1)dt3\int t^{\frac{1}{3}}(t+1)\frac{dt}{3}

=13(t43+t13)dt\frac{1}{3}\int \bigg(t^{\frac{4}{3}}+t^{\frac{1}{3}}\big)dt

= 13[t7373+t4343]+C\frac{1}{3}\bigg[\frac{t^{\frac{7}{3}}}{\frac{7}{3}}+\frac{t^{\frac{4}{3}}}{\frac{4}{3}}\bigg]+C

= 13[37t73+34t43]+C\frac{1}{3}\bigg[\frac{3}{7}t^{\frac{7}{3}}+\frac{3}{4}t^{\frac{4}{3}}\bigg]+C

= 17(x31)73+14(x31)43+C\frac{1}{7}(x^3-1)^{\frac{7}{3}}+\frac{1}{4}(x^3-1)^{\frac{4}{3}}+C